FFRI
N\

Bypassing macOS Security & Privacy
Mechanisms: From Gatekeeper to
System Integrity Protection

FFRI Security, Inc.

https://www.ffrijp




$ whoami - Koh M. Nakagawa FFRL

X @tsunekOh

» Security Researcher at FFRI Security, Inc.

* Mainly conducting vulnerability research on macOS

« Earned more than $50k in various bug bounty programs since last year

* One of MSRC Most Valuable Security Researchers 2023

» Gave talks at Black Hat Briefings (EU 2020 and Asia 2023) & CODE BLUE (2021)

O - CODE BLUE O

blad.(qha == I bhlack hat

EUROPRPE 2020 =821 eTokyo ASIA ZEEE



Fundamental concepts of macOS security

System Integrity Protection (SIP) (a.k.a. rootless)
Introduced from OS X El Captain

Restricts some dangerous operations, such as ...
* Modifying system files (e.g., files of the /bin directory)
* Loading untrusted kernel extensions
» Debugging system processes

Even the root user cannot perform these dangerous operations, unlike in a
traditional *NIX security model.

FFRI
N\



Fundamental concepts of macOS security FFRL

Code signature & entitlements

macOS security & privacy mechanisms heavily rely on code signature & entitlements.
* "An entitlement is a right or privilege that grants an executable particular capabilities.”
Some operations are not permitted without proper entitlements.
« Example: Only Apple binaries with proper private entitlements can modify SIP-protected files.

sh-3.2% codesign -dv --entitlements - /usr/libexec/rootless-init
Executable=/usr/libexec/rootless-init
Identifier=com.apple.rootless-init

Format=Mach-0 universal (x86_64 arméie)

CodeDirectory v=20400 size=624 flags=0x@(none) hashes=9+7 location=embedded
Platform identifier=14

Signature size=4442

Signed Time=Apr 24, 2023 12:32:43

Info.plist=not bound

Teamldentifier=not set

Sealed Resources=none

Internal requirements count=1 size=72

[Dict]

[Key]l com.apple.private.apfs.set-firmlink
[Valuel
[Bool] true
[Key]l com.apple.rootless.install
[Valuel
[Bool] true




Overview of macOS security & privacy mechanisms

Clicking a malicious Executing
app bundle unsandboxed code

Modifying  Loading
\ system files kexts

Clicking a macro-embedded doc
, Executing
ANA ‘ i ' 2nd stage

(executing sandboxed code)
malware

Accessing sensitive info



Overview of macOS security & privacy mechanisms

Clicking a malicious Executing
app bundle unsandboxed code

5 Gatekeeper

Modifying  Loading
system files kexts
App Sandbox

Clicking a macro-embedded doc
Executing
‘ i ' 2nd stage

(executing sandboxed code)
malware

Accessing sensitive info



Overview of macOS security & privacy mechanisms

Clicking a malicious Executing
app bundle unsandboxed code

5 Gatekeeper |
Modifying  Loading
* system files kexts

App Sandbox
Clicking a macro-embedded doc
Executing
‘ i ' 2nd stage

(executing sandboxed code)
malware

Accessing sensitive info



Overview of macOS security & privacy mechanisms

Clicking a malicious Executing
app bundle unsandboxed code

5 Gatekeeper ‘
I\/Iodlfylng Loading
system files kexts

App Sandbox - TCC XProtect

Clicking a macro-embedded doc
S Executlng
‘ h ' 2d stage

(executing sandboxed code)
malware

Accessing sensitive info



Overview of macOS security & privacy mechanisms

Clicking a malicious Executing
app bundle unsandboxed code
g Gatekeeper | 5| P s w
I\/Iodlfylng Loading
system files kexts
App Sandbox  TCC

XProtect

S Executlng
‘ i' 2d stage

malware

Clicking a macro-embedded doc
(executing sandboxed code)

Accessing sensitive info



Overview of macOS security & privacy mechanisms X

Clicking a malicious Executing
app bundle unsandboxed code

—¢— [

Modifying  Loading
system files kexts

XProtect o

Gatekeeper

X
. App Sandbox TCC

Clicking a macro-embedded doc
(executing sandboxed code)

10



FFRI
N\

Gatekeeper bypass



What is Gatekeeper? FERL

Apple Platform Security

macOS includes a security technology called Gateleeper, which is

designed to help ensure that only trusted software runs on a user's
Mac.

12


https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

What is Gatekeeper? FERL

For an app on the App Store, Apple reviews each app and signs it to make
sure that it has not been tampered with or altered.

Gatekeeper verifies the app has been signed by the App Store.

For an app not on the App Store, Gatekeeper verifies the following:

» The app is from an identified developer (by checking the code signature).
» The app has not been altered.

» The app is “notarized” by Apple.

What is “notarized”?

13



Notarization i)

“Notarization is a malware scanning service provided by Apple.”

An app approved by the Notarization service is “notarized.”
 This app is regarded to be free of malicious content by Apple.

App developers should submit their app to Notarization before distributing it.
* A ticket is awarded once the app is approved. ,

» Gatekeeper verifies the app based on the awarded ticket.

» App developers can optionally staple the ticket to the app.
v This enables Gatekeeper to verify the app even if the user is offline.

“DemoApp” can't be opened
because Apple cannot check it
for malicious software.

This software needs to be updated.
Contact the developer for more
information.

There is no “ignore” option.

A user cannot execute this
app by ignoring this warning. Show in Finder

14



Quarantine attribute FERY,

Extended file attribute named com.apple.quarantine

Which files are quarantined?
* Downloaded files
* Files dropped by sandboxed apps

Open in Finder »

Extended attributes of the downloaded app

sh-3.2% xattr -p com.apple.quarantine DemoApp.app
0083;650?12b5;Safari;07690EE3—1ClF—4D79—ACb5—385160E9B997

flags;timestamp;agent,UUID

Gatekeeper does not check apps without com.apple.quarantine
* Because macOS regards files without com.apple.quarantine as local ones

15



APIs related to the quarantine mechanism
libquarantine is the user-mode interface of the quarantine mechanism.

Two classes of functions (qtn_file_* and gtn_proc_*) are exported.

» gtn_file_* are used for dealing with the quarantine policy on a per-file basis.
v e.g., qtn_file_apply_to_path adds the quarantine attribute to a specified path.

» qtn_proc_* are used for dealing with the quarantine policy on a per-process basis.
v" e.g., All files created by a process calling gtn_proc_apply_to_self are quarantined.

sh-3.2% r2 —c "iE" —-q usr/lib/system/libquarantine.dylib
[Exports]

nth paddr

9x00001foc
0xP0000echd
0xP0001574
9x00002060
0x00000f7b
0xP0001T2cC
0x00001244

0x00001704
0x00002224
0x000019d8

vaddr

@x7ff80@cdlef@c
Ox7ff80cdldech
ox7ff8ecdle574
Ox7ff80cdl1fe60
Ox7ff80cdldf7b
@x7ff80cdlef2c
Ox7ff80cdle244

Ox7ff8@cdle704
Ox7ff80cdlf224
Ox7ff80cdle9d8

bind

GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

GLOBAL
GLOBAL
GLOBAL

type

FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC

size 1ib name

__gtn_error

__qtn_file_alloc
__qtn_file_apply_to_fd
__qtn_file_apply_to_mount_point
__qtn_file_apply_to_path
__qtn_file_claone
__qgtn_file_free
__qtn_proc_alloc
__qgtn_proc_apply_to_pid
__qtn_proc_apply_to_self

FFRI
\

16



How to use quarantine APIs

char* input_file = argv[1];

// initialize quarantine info

gtn_file t ginfo = qgtn _file_alloc();

const char* qdata =

"q/0083;60bca5el;Saftari; EDO38CA1-1FD3-4A6A-B3DD-EF64B565C027";
_qtn_file init with _data(ginfo, gdata, strlen(qgdata));

// add quarantine info to the file
_gtn_file _apply to path(ginfo, input file);

// free quarantine info
_gtn_file free(qinfo);




Quarantined

The extracted

ZIP

sh-3.2$% xattr —p com.apple.quarantine DemoApp.zip

0083;650923f3; Safari; 2D7D412C-8E85-4D7A-9DE4—50879042E170E

Decompile: _propagateQuarantinelnformation =
puVarl = __got::_objc_release;
(*x(code *x)puVvarl)(uvars);
¥
else {

LAB_100018616:

LAB_10001861f:

} while (local 130 !'= 1var9);

if (local_dl != '\0') goto LAB_10001861f;

(*(code *)__got::_objc_release)(uvar5);

uVar5 = x(undefined8 x)(local_108 + _qtInfo);
uVar3 = _ stubs::_objc_retainAutorelease(uvar3);
uVar3 =

app is also
quarantined

sh-3.2% xattr -p com.apple.quarantine DemoApp.app/
0083;650923f3;Safari;2D7D412C-8E85-4D7A-9DE4-5079042E170E

sh-3.2% xattr -p com.apple.quarantine DemoApp.app/Contents/Mac0S/DemoApp
0083;650923f3;Safari;2D7D412C-8E85-4D7A—-9DE4-5079042E170E

(*(code *)_ got::_objc_release)(Llocal_100);

(x(code *)__ got:: objc_release)(uvar7);

Archive Utility calls
qgtn_file_apply_to_path to

propagate com.apple.quarantine
to the extracted files

(k(code *)__got::_objc_msgSend)(uVar3,"fileSystemRepresentation");
__stubs::__qtn_filh_apply_to_path(uVarS,uVar3);

}

(*#(code *)__got::_objc_release)(uVard);
uVar3 = local_e8;

War9 = War9 + 1;

18



My initial Gatekeeper bypass idea FERL

Can we prevent Archive Utility from propagating quarantine attr?

Not quarantined

I

1P Extract the zip, but

fail to propagate
quarantine attr

| checked which files are not quarantined by qtn_file_apply_to_path

19



BSD file flag

macOS has components originating from BSD.

File flag is one of the BSD-derived features.
« Various flags can be specified to a file (https://man.freebsd.org/cgi/man.cgi?chflags(1)).

» The uchg flag captured my attention.

uchg, uchange, uimmutable
set the user immutable flag (owner or super-user only)

« This flag is typically used for locking a file.

Can gtn_file_apply to_path add

com.apple.quarantine to a file having uchg?

20


https://man.freebsd.org/cgi/man.cgi?chflags(1)

Experiment FEN

'sh-3.2% touch testfile

sh-3.2% ./add_quarantine.out testfile
'sh-3.2% xattr -1 testfile

com.apple.quarantine: 0083;60bca5el;Safari;ED@38CA1-1FD3-4A6A-B3DD-EF64B565C027

21



Experiment FEN

sh-3.2% touch testfile

sh-3.2% ./add_quarantine.out testfile

sh-3.2% xattr -1 testfile

com.apple.quarantine: @083;60bca5el;Safari;ED@38CA1-1FD3-4A6A-B3DD-EF64B565C027
sh-3.2% rm testfile

sh-3.2% touch testfile
sh-3.2% chflags uchg testfile
sh-3.2% ./add_quarantine.out testfile

sh-3.2%

22



How to retain uchg

Compressing an app to a ZIP file cannot retain file flags :(
The extracted files do not have uchg.

sh-3.2% mkdir -p test/a
sh-3.2% chflags uchg test/a
sh-3.2% 1s -10 test
total @
drwxr-xr-x 2 nanoha wheel uchg 64 Sep 19 13:59 a
sh-3.2% zip -r test.zip test
adding: test/ (stored 0%)
adding: test/a/ (stored 0%)

sh-3.2% unzip -d tmp test.zip
Archive: test.zip
creating: tmp/test/

creating: tmp/test/a/
total @

drwxr-xr-x 2 nanoha wheel (:)64 Sep 19 13:59 a

23



How to retain uchg FERL

However, compressing an app to a tar.gz file can retain file flags :)
The extracted files have uchg.

sh-3.2% mkdir -p test/a

sh-3.2% chflags uchg test/a

sh-3.2% tar czvf test.tar.gz test

a test

a test/a

sh-3.2% open -a "Archive Utility" test.tar.gz

sh-3.2% 1s -10 test\ 2/
total @
drwxr-xr-x 2 nanoha staff uchg 64 Sep 19 14:15 a

24



Steps to exploit FERL

« Create a directory containing an app.

« Add uchg to the app.

« Compress the app to a tar.gz file.

« Send the tar.gz file to a victim.

* The victim opens the tar.gz file and runs the app.

» Gatekeeper does not check the app.

25



@ Safari File Edit View History Bookmarks Window Help O M Q & SunOct22 17:21

eee M~ < > D localhost

Directory listing for /

e festtar.gz

I8 =250"w @80~ 20" @



Apple’s fix FERL

qtn_file_apply_to_path can add the quarantine attribute to a file having uchg.

[sh-3.2% touch ~/a

[sh-3.2% chflags uchg ~/a

[sh-3.2% 1s -10 ~/a

-rw-r--r-- 1 kohnakagawa staff wuchg @ May 16 12:26 /Users/kohnakagawa/a

[sh-3.2% ./add_quarantine.out ~/a
[sh-3.2% xattr -1 ~/a

com.apple.quarantine: 8083;60bcabel;Safari; EDO38CA1-1FD3-4A6A-B3DD-EF64B565C027

Apple did not assign CVE(?), but added my name to Additional Recognition.

quarantine

We would like to acknowledge Koh M. Nakagawa of FFRI Security, Inc. for their assistance.

https://support.apple.com/en-us/HT213670

27


https://support.apple.com/en-us/HT213670

Disclosure timeline

2022/11/28: | reported this vulnerability to Apple.

2022/11/30: | sent additional details.

2022/12/03: Apple validated the report.

2023/03/27: Apple fixed this vulnerability in macOS Ventura 13.3.

FFRI

28



Bonus: App Sandbox bypass

This vulnerability can be used for bypassing App Sandbox.
Because we can prevent files dropped by sandboxed apps from adding the
quarantine attribute

* Drop an app bundle and run it using the “open” command.
» The app is executed under the unsandboxed environment.

FFRI
N\

29



Related vulnerability: CVE-2022-42821 FFRL

@yo_yo_yo_jbo at Microsoft reported a very similar vulnerability.

He abused AppleDouble & ACL to prevent Safari from adding the quarantine attr

» "Gatekeeper’s Achilles heel: Unearthing a macQOS vulnerability”

However, | reported the file flag trick to Apple before the disclosure of this
vulnerability.

* Moreover, Apple's fix of CVE-2022-42821 was incomplete and still vulnerable to my trick in
Ventura 13.

 The ultimate fix for my trick was applied in Ventura 13.3.

30


https://www.microsoft.com/en-us/security/blog/2022/12/19/gatekeepers-achilles-heel-unearthing-a-macos-vulnerability/

Typical Gatekeeper bypass vulns in 3™ party apps N

Typical Gatekeeper bypass vulns in 3 party apps

The root cause is missing LSFileQuarantineEnabled in the Info.plist file.

» This is "a Boolean value indicating whether the files this app creates are quarantined by
default.”

Example 1: Thunderbird CVE-2022-3155 (credited to me)
* Surprisingly, Thunderbird does not enable LSFileQuarantineEnabled for long.

Example 2: (many) Electron-based apps
* Electron-based apps typically do not enable LSFileQuarantineEnabled
v’ Because LSFileQuarantineEnabled breaks the auto update feature of Electron
* Please make sure that downloaded files are quarantined.
v’ gatemaker is a possible solution.

31


https://developer.apple.com/documentation/bundleresources/information_property_list/lsfilequarantineenabled?language=objc
https://github.com/electron-userland/electron-builder/issues/3754
https://github.com/javan/gatemaker

Overview of macOS security & privacy mechanisms

Clicking a malicious Executing
app bundle unsandboxed code
g Gatekeeper | 5| P s w
I\/Iodlfylng Loading
system files kexts
App Sandbox  TCC

XProtect

S Executlng
‘ i' 2d stage

malware

Clicking a macro-embedded doc
(executing sandboxed code)

Accessing sensitive info 32



Overview of macOS security & privacy mechanisms R

Clicking a malicious Executing
app bundle unsandboxed code
' Gatekeeper g N S|P
IEEEEsS—) |
Modifying  Loading
system files kexts
App S

Clicking a macro-embedded
(executing sandboxed code)

Executing

2d stage

malware

Accessing sensitive info 33



FFRI
N\

TCC bypass



What is TCC?

TCC is a privacy mechanism that protects a user’s sensitive information.

The sensitive information includes private folders, camera, and microphone.

FFRI
N\

Even the root cannot access the sensitive information without the user’s explicit

consent.

Join Meeting

N -4
K

“zoom.us"” would like to access
the microphone.

[ Meeting ID or Personal Link Name ]

" |

Remember my name for future meetings

In order to speak to participants, Zoom
requires to your microph

() Don't connect to audio

(") Turn off my video

By clicking "Join", you agree to our Terms of Service

and Privacy Statement.

35



) Nottications
#) sound
‘CA Focus

‘X Screen Time

General

@ Appearance

@ Accessibility
Control Center

* Siri & Spotlight
v Privacy & Security

= Desktop & Dock
3&: Displays

. Wallpaper

. Screen Saver

. Battery

8 Lock Screen
. Touch ID & Password

’-.E Users & Groups

. Passwords

=0
AN Intornat Annniinte

L
L
k4
®
W
n
=

o

B @ ® & @©

> Privacy & Security

Bluetooth
Microphone
Camera

Motion & Fitness
HomeKit

Speech Recognition
Media & Apple Music
Files and Folders
Full Disk Access
Focus

Accessibility

Input Monitoring
Screen Recording

Passkeys Access for Web Browsers

& Notifications
@ sound
© Focus

% Screen Time

- General

© Appearance

@ Accessibility

- Control Center

® Siri & Spotlight
i- Privacy & Security

(= Desktop & Dock
-‘F Displays

' Wallpaper

' Screen Saver

. Battery

8 Lock Screen
s Touch ID & Password
22 users & Groups

. Passwords
=

Files and Folders

Allow the apr tions below to ac

v a Installer

Desktop Folder

n Slack

Downloads Folder
=] sshd-keygen-wrapper

é Suspicious Package

Desktop Folder

Terminal
Full Disk Access
B9 visual Studio Code
Documents Folder
@) xcode

Downloads Folder

cess files and folders




How does TCC work? FERY,

TCC is enforced by two tccd instances.
One runs as the root and the other runs as a logged-in user.

sh-3.2% ps aux | grep tccd | grep -v grep

ffri 443 0.0 0.1 4308768 8736 7?7 S 1:44PM @9 /System/Library/PrivateFrameworks/TCC. framework/Resources/tccd

0:01.
root 153 0.2 0.1 4369312 11400 7?? Ss 1:44PM  @:03.76 /System/Library/PrivateFrameworks/TCC.framework/Resources/tccd system

There are two configuration files of TCC.
« /Library/Application Support/com.apple.TCC/TCC.db for the system (SIP-protected)

» ~/ Library/Application Support/com.apple.TCC/TCC.db for the logged-in user (TCC-protected)
v An app with Full Disk Access can modify this TCC.db

If we can modify these database files directly, we can bypass TCC.
» However, these database files are SIP-protected or TCC-protected.

37



Previous research on TCC bypass techniques X

TCC bypass techniques are classified into the following categories:

Running code in the context of other approved (or entitled) apps
» Example 1: Dylib injection through DYLD_INSERT_LIBRARIES (e.g., CVE-2020-24259)
» Example 2: Dylib injection through plugins (e.g., CVE-2020-27937)

Fooling tccd
* Example: Mount over the TCC directory and force tccd to use a fake TCC.db (CVE-2021-30808)

Other neat ideas
* Example 1: Abuse App Translocation (CVE-2021-30782)
* Example 2: Abuse Time Machine Snapshot (CVE-2020-9771)
* For other techniques, see the BHUSA 2021 and BHEU 2022 talks by @theevilbit and @_r3ggi

38


https://blackhat.com/us-21/briefings/schedule/#-ways-to-bypass-your-macos-privacy-mechanisms-23133
https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-mechanisms-29272

Previous research on TCC bypass techniques X

TCC bypass techniques are classified into the following categories:

Running code in the context of other approved (or entltled) apps

« Example 1: Dylib injeg¥
e A Here, | will show a technique classified into this category.

Fooling tccd
* Example: Mount over the TCC directory and force tccd to use a fake TCC.db (CVE-2021-30808)

Other neat ideas
» Example 1: Abuse App Translocation (CVE-2021-30782)
* Example 2: Abuse Time Machine Snapshot (CVE-2020-9771)
* For other techniques, see the BHUSA 2021 and BHEU 2022 talks by @theevilbit and @_r3ggi

39


https://blackhat.com/us-21/briefings/schedule/#-ways-to-bypass-your-macos-privacy-mechanisms-23133
https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-mechanisms-29272

How to inject code FERL

Code injection is strictly prohibited on macOS.
Dylib injection/hijacking
« Library validation is typically enabled for apps.

* It prevents an app from loading untrusted dylibs, and hence, dylib injection/hijacking does
not work.

Thread injection
* Like CreateRemoteThread type injection on Windows
» However, this works if the app has the get-task-allow entitlement.
* Few apps have the get-task-allow entitlement.

Other code injection techniques on macOS?
 Technique using saved state (CVE-2021-30873 by @xnyhps), but this is currently fixed

40



How to inject code

Code injection is strictly prohibited on macOS.
Dylib injection/hijacking
« Library validation is typically enabled for apps.

* It prevents an app from loading untrusted dylibs, and hence, dylib injection/hijacking does
not work.

Thread injection
* Like CreateRemoteThread type injection on Windows

» However, this works if the app has the get-task-allow entitlement.
. F A i

41



AOT poisoning FIAL

Code injection poisoning Rosetta 2 binary translation cache

Rosetta 2 is a translation mechanism to execute x86_64 code on Apple Silicon.
* Translated artifacts (AOT files) are saved and cached.
* Rosetta 2 reuses these artifacts when a user runs the same app again.

» Rosetta 2 provides translate_tool
v' This is a CLI tool to enable the creation of an AQOT file without running the executable.
v’ Located at the /usr/libexec/rosetta directory

sh-3.2% 1s /usr/libexec/rosetta/

debugserver oahd-helper runtime
oahd oahd-root-helper translate_tool

42



Rosetta 2 internals: AOT lookup hash

Rosetta 2 uses the dedicated hash for checking whether the app
was previously translated.
Referred to as "AQOT lookup hash” in this talk

Decompile: FUN_1000058cc - (oahd)

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

(%)
5

] &

__auth_stubs::_CC_SHA256_Init((CC_SHA256_CTX *)local_8210);
pppppppuVar4l = local_8bf8;
if (-1 < local_8be8) {
_Stack35824._0_4 = (CC_LONG)local_8be8._7_1_;
pppppppuVard4l = &local_8bf8;

/x file path */

__auth_stubs::_CC_SHA256_Update
((CC_SHA256_CTX x) local_8210,pppppppuVaral, (Cf

_auth stubst 7 G Susse. Update A SHA-256 hash is generated based on
L u(i‘(jC:ZJSHAZSG_CTX x)local_8210,&local_8080, CONC MaCh—O header and |Oad Commands
ctime, mtime, and crtime

__auth_stubs:z:_CC_SHA256_Update((CC_SHA256_CTX *)local
file path

/% gid *x/
__auth_stubs::_CC_SHA256_Update( (CC_SHA256_CTX *) loa
/* mtime *x/
__auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX *)loca
/x ctime x/ . 5
__auth_stubs::_CC_SHA256_Update ((CC_SHA256_CTX *) local ul d an d g I d
/% crtime x/
__auth_stubs::_CC_SHA256_Update
((CC_SHA256_CTX ) local_8210,&stat.st_birthtimespec,@x10);
/% st_size x/
__auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX *)local 8210,&stat.st_size,8);
__auth_stubs:z:_CC_SHA256_Final((uchar x)&Llocal_8230, (CC_SHA256_CTX x)local _8210);

43



Rosetta 2 internals: AOT lookup hash

a.out

-

SIP-protected
124abc...

a.out.aot

abc341...
hoga.out.aot

hoge.out.aot

bdddde.
fuga.out.aot

c314de...
fuge.out.aot

/

44



Rosetta 2 internals: AOT lookup hash

—

The generated
AOT lookup hash

SIP-protected
124abc...

a.out.aot

abc341...
hoga.out.aot

hoge.out.aot

bdddde.
fuga.out.aot

c314de...
fuge.out.aot

\ :

/

45



Rosetta 2 internals: AOT lookup hash

SIP-protected \

124abc...
a.out.aot

abc341...
a.out hoga.out.aot

f3d4de...
hoge.out.aot

bdd4de...
fuga.out.aot

__124abc. Side

The generated
AOT lookup hash

fuge.out.aot

_—




Rosetta 2 internals: AOT lookup hash

a.out

" 124abc... B

/ SIP-protected ﬁ

The generated
AOT lookup hash

124abc...
a.out.aot

abc341...
hoga.out.aot

f3d4de...
hoge.out.aot

bdd4de...
fuga.out.aot

c314de...




Rosetta 2 internals: AOT lookup hash

~124abc... B

The generated
AOT lookup hash

// SIP-protected \
124abc...
a.out.aot
abc341...
hoga.out.aot
f3d4de...
hoge.out.aot

bdd4de...
fuga.out.aot

c314de...
fuge.out.aot




Core idea of AOT poisoning FERL

Hash collision attack on an AOT lookup hash

The AOT lookup hash is not generated based on the entire contents of an
executable.
* The AQT lookup hash is a SHA-256 hash generated based on...
v Mach-O header and load commands
v ctime, mtime, and crtime
v file path
v uid and gid
» The code section is not used for generating this hash.

If we can modify the code in an executable while keeping its AOT lookup hash
unchanged, we can force Rosetta 2 to use a different AOT file upon execution.

49



AOT poisoning

a.out

/////7 SIP-protected ‘\\\\\

abc341...
hoga.out.aot

f3d4de...
hoge.out.aot

bdd4de...
fuga.out.aot

c314de..
\\\\¥ fuge.out.aot 4////




AOT poisoning

-

a.out.aot

abc341...
hoga.out.aot
f3d4de...
hoge.out.aot
bdd4de...
fuga.out.aot
c314de...
fuge.out.aot

. .
.
.
.
°
°

/

51



AOT pOiSoning

-

SIP-protected
124abc...

a.out.aot

abc341...
hoga.out.aot

hoge.out.aot

bdd4de. .

fuga.out.aot

c314de...
fuge.out.aot

/

52



AOT poisoning

/ SIP-protected \

a.out.aot

abc341...
hoga.out.aot

f3d4de...
hoge.out.aot

bdd4de...
fuga.out.aot

_i24abc. & c314de-.
The generated fuge.out.aot
AQT lookup hash K . /

53



Core idea of AOT poisoning

How do we modify a code section while keeping the AOT lookup unchanged?

/The AOT lookup hash is a SHA-256 hash generated based on...
* Mach-O header and load commands

 ctime, mtime, and crtime o .
Of course, modifying the file

« file path :
X uid and gid updates mtime

|dea: Restore mtime after modifying the file
» However, modifying the timestamp always updates ctime (at least on the APFS filesystem).

* As the AOT lookup hash is generated based on ctime, mtime, and crtime, modifying the
timestamp changes the AOT lookup hash...

FFRI
N\

54



Core idea of AOT poisoning FER,

But how about other

filesystems?

|dea: Restore mtime after modifying the file
» However, modifying the timestamp always updates ctime (at least on the APFS filesystem).

* As the AOT lookup hash is generated based on ctime, mtime, and crtime, modifying the
timestamp changes the AOT lookup hash...

55



Filesystem downgrade trick

Timestamps of FAT32 filesystem

mtime

ctime crtime

Time Time Date Date Birth

Stored Resolution | Modified | Accessed | Change

UTC Jan 1, Updated Updated N/A Creation
1970 in ctime is not defined on FAT32!
local time

-> Modifying mtime does not

Table 1: FAT32 Modification times (Lee, 20135)

update ctime

If we copy an app to the mounted FAT32 dmg, we can modify

a code section while keeping the AOT lookup hash unchanged.

https://www.sans.org/white-papers/36842/

56


https://www.sans.org/white-papers/36842/

Steps to exploit

Find a TCC-approved app.

Create a FAT32 dmg and mount it.

Copy the approved app to the mounted point.

Inject shellcode into it.

Run translate tool to create an AOT file.

Restore the target executable to the original executable.
Restore the timestamps.

Run the executable.

We can execute code in the context of the approved app! &

For more details, see my Black Hat Asia 2023 talk slides

FFRI
N\

57


https://www.blackhat.com/asia-23/briefings/schedule/#dirty-bin-cache-a-new-code-injection-poisoning-binary-translation-cache-30907

@ Terminal Shell Edit View Window Help

Q £ WedMay3 19:43

aot_poisoning — sh — 80x24

General FileVault  Firewall  Privacy

micropnone
Allow the apps below to record the contents of your

Speech Recognition screen, even while using other apps.

Accessibility
Input Monit)ing
Full Disk Access
Files and Folders

Screen Recording

Media & Apple Music

HomeKit

EJ siuetootn




Apple’s fix FERL

Apple addressed this issue in macOS Ventura 13.
CVE-2022-42789 is assigned.

» We no longer use the AOT poisoning for a signed executable.
* However, we still use this technique for a non-signed executable :(

Apple gave me a generous bounty :)

AppleMobileFilelntegrity

Available for: Mac Studio (2022), Mac Pro (2019 and later), MacBook Air (2018 and later), MacBook
Pro (2017 and later), Mac mini (2018 and later), iMac (2017 and later), MacBook (2017), and iMac Pro
(2017)

Impact: An app may be able to access user-sensitive data
Description: An issue in code signature validation was addressed with improved checks.

CVE-2022-42789: Koh M. Nakagawa of FFRI Security, Inc.

https://support.apple.com/en-us/HT213488

59


https://support.apple.com/en-us/HT213488

Bonus: XProtect bypass FFRL

This code injection allowed an attacker to bypass XProtect.

XProtect scans an x86_64 executable
* It does not scan an executable when an attacker generates the AOT file using translate_tool
« If an attacker injects code into a benign executable, he/she can bypass the XProtect scan.

Apple also fixed this issue in macOS Ventura 13.4.
Now, XProtect scans an x86_64 executable when its AOT file is generated.

Rosetta

We would like to acknowledge Koh M. Nakagawa of FFRI Security, Inc. for their assistance.

https://support.apple.com/en-us/HT213758

60


https://support.apple.com/en-us/HT213758

About 3™ party apps FFR

Code injection vulnerabilities of TCC bypass in 3rd party apps

Electron-based apps that do not disable ELECTRON RUN AS NODE
 Can inject any JavaScript code by specifying ELECTRON_RUN_AS_NODE
» Example: Chatwork Desktop App (CVE-2023-32546, currently fixed, credited to me)
* Please disable ELECTRON_RUN_AS_NODE by using Electron Fuse

For other issues of Electron-based apps, please see the following talk and post:
» ELECTRONIizing macQOS privacy by @_r3ggi
» Abusing Electron apps to bypass macOS' security controls by @_r3ggi

61


https://www.electronjs.org/docs/latest/api/environment-variables#electron_run_as_node
https://www.electronjs.org/docs/latest/tutorial/fuses
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Wojciech%20Regu%C5%82a%20-%20ELECTRONizing%20macOS%20privacy%20-%20a%20new%20weapon%20in%20your%20red%20teaming%20armory.pdf
https://wojciechregula.blog/post/abusing-electron-apps-to-bypass-macos-security-controls/

Overview of macOS security & privacy mechanisms

Clicking a malicious Executing
app bundle unsandboxed code
Gatekeeper | | 5| P s w
I\/Iodlfylng Loading
system files kexts
App Sandbox  TCC

XProtect
Clicking a macro-embedded doc

(executing sandboxed code)

Executlng
‘ ’ ' 2nd stage
— 0 malware

Accessing sensitive info 62



Overview of macOS security & privacy mechanisms R

Clicking a malicious Executing
app bundle unsandboxed code
| Gatekeeper p— N SIP
Modifying  Loading
system files kexts
App Sandbox  TCC

XProtect

Clicking a macro-embedded doc

(executing sandboxed code)
g U

Accessing sensitive info 63




FFRI
N\

SIP bypass



What is System Integrity Protection (SIP)?
System Integrity Protection (SIP)

Restricts some dangerous operations, such as ...
* Modifying system files
 Loading untrusted kernel extensions
» Debugging system processes in user mode
* Kernel debugging

Even the root user cannot perform these dangerous operations.
* The root user is not GOD on macOS.

To disable SIP, a user needs to restart his/her Mac device in Recovery mode.
* However, it requires physical access to the Mac device.

FFRI
N\

65



More about SIP FFRL
SIP is configured through NVRAM variables.

NVRAM bit

CSR_ALLOW UNTRUSTED _KEXTS Controls the loading of untrusted kernel extensions
CSR_ALLOW UNRESTRICTED FS Controls write access to restricted filesystem locations

Controls whether to allow getting a task port for
Apple processes (that is, invoke the task_for_pid API)

CSR_ALLOW _UNRESTRICTED_NVRAM Controls unrestricted NVRAM access

CSR_ALLOW_TASK FOR_PID

CSR ALLOW _KERNEL DEBUGGER Controls whether to allow kernel debugging

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-
macos-vulnerability-shrootless-that-could-bypass-system-inteqgrity-protection/
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/sys/csr.h#L41-154

66


https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/sys/csr.h#L41-L54

More about SIP
SIP is configured through NVRAM variables.

NVRAM bit Description

CSR_ALLOW_UNTRUSTED_KEXTS
CSR_ALLOW_UNRESTRICTED_FS

CSR_ALLOW_TASK FOR_PID

CSR_ALLOW_UNRESTRICTED_NVRAM
CSR_ALLOW_KERNEL_DEBUGGER

FFRI
N\

Controls the loading o My focus in this talk

Controls write access to restricted filesystem locations

Controls whether to allow getting a task port for
Apple processes (that is, invoke the task_for_pid API)

Controls unrestricted NVRAM access

Controls whether to allow kernel debugging

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-

macos-vulnerability-shrootless-that-could-bypass-system-inteqgrity-protection/

https://github.com/apple-oss-distributions/xnu/blob/main/bsd/sys/csr.h#L41-154

67


https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/sys/csr.h#L41-L54

SIP filesystem restrictions FERL

Which files are protected by SIP?

Files listed in /System/Library/Sandbox/rootless.conf
* On boot, rootless-init applies file system restrictions to these files.

sh-3.2% head -n 10 /System/Library/Sandbox/rootless.conf
/Applications/Safari.app
/Library/Apple
TCC /Library/Application Support/com.apple.TCC
CoreAnalytics /Library/CoreAnalytics

NetFSPlugins /Library/Filesystems/NetFSPlugins/Staged

NetFSPlugins /Library/Filesystems/NetFSPlugins/Valid
/Library/Frameworks/iTunesLibrary.framework

KernelExtensionManagement /Library/GPUBundles

KernelExtensionManagement /Library/KernelCollections

MessageTracer /Library/MessageTracer

Protected files have the restricted file flag.
* You can check this by running the Is -IO command.

* An attacker cannot attach the restricted file flag to a file manually.
sh-3.2% 1s -10 /bin/1s

—-rwxr-xr-x 1 root wheel restricted,compressed 187120 Sep 6 13:50 /bin/ls

68



Why is SIP bypass so critical? FERL

SIP bypass always means Full TCC bypass
As described in Mickey Jin's write-up
Because we can modify the SIP-protected TCC database file with this primitive

An attacker can create undeletable malware with this primitive.

Thus, an attacker gains powerful persistence with an SIP bypass vulnerability.
* Even XProtect cannot remove this malware because it does not have SIP-related entitlements.

69


https://jhftss.github.io/CVE-2022-26712-The-POC-For-SIP-Bypass-Is-Even-Tweetable/

Some SIP-related entitlements

Entitlement ______|Description ____

com.apple.rootless.install Completely bypasses SIP filesystem checks

com.apple.rootless.install.heritable Inherits com.apple.rootless.install to child
processes

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-
vulnerability-shrootless-that-could-bypass-system-integrity-protection/

Only Apple binaries can have these private entitlements.

70


https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/

Apple binary with SIP-related entitlements FFRL

system_installd

h-3.2% codesign -d ——entitlements - /System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/system_installd
xecutable=/System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/system_installd
[Dict]

[Key] com.apple.private.apfs.create-synthetic-symlink—folder

[Valuel

[Bool] true
[Key] com.apple.private.launchservices.cansetapplicationstrusted

[Key]l com.apple.rootless.install.heritable
[Valuel

[Bool]l true

"system_installd is used by the system during package installation.”

» However, this daemon is used for an Apple-signed macOS pkg installation.
v For 3 party package installation, installd is used instead.
v Of course, installd does not have SIP-related entitlements.

71



Apple software package (.pkg) FFRL

PKG is an XAR archive format.

It is commonly used for software installation on macOS.

® |nstall Zoom

Welcome to the Zoom Installer

The Zoom desktop client brings together team chat, phone,
whiteboard, meetings, contacts, and over 1,500 native

Introduction

A u Se r- Ca n i n Sta | | m a COS p kg fi |e by integrations and apps to make connections that matter.

To stay up to date on the latest feature enhancements
subscribe to our blog at and follow us on social

« Clicking the pkg file and following the instructions s g e e g0 e
. . By clicking “Continue”, you agree to our Te and
* Running the installer command |

Continue

INSTALLER(8) System Manager's Manual INSTALLER(8)

NAME

installer — system software and package installer tool.

72



macOS PKG components

pkgutil --expand Safaril6.5BigSurAuto.pkg /tmp/Safari

B Safari > B Bom ] postinstall

B Packagelnfo BB postinstall_actions
B Payload ] preinstall
@ Scripts BB preinstall_actions
] safariFiles
] systemFiles
@ Tools

FFRI
N\

73



macOS PKG components

pkgutil --expand Safaril6.5BigSurAuto.pkg /tmp/Safari

@ Safari > B Bom
B Packagelnfo
B Payload

[ —

@ Scripts B preinstall_actions

™ ] safariFiles
] systemFiles
@ Tools

FFRI
N\

74



macOS PKG components

BB Safari

pkgutil --expand Safaril6.5BigSurAuto.pkg /t

B Bom

B Packagelnfo
B Payload

™8 Scripts

Scripts is an optional
directory containing the
scripts executed during

the installation.

The postinstall script is
executed after the
installation.

™ ] postinstall
BB postinstall_actions
™| preinstall

BB preinstallgaat ) —
The preinstall script is

=] systemF exeguted before the
B Tools installation.

[] safariFils

75



Pre/postinstall scripts

These scripts of an Apple-signed pkg

Recall that system_installd has com.apple.rootless.install.heritable
 The scripts can bypass SIP filesystem checks!

Vulnerabilities in these scripts lead to SIP bypass.

Let's hunt for bugs in the pre/postinstall scripts of Apple-signed pkg.

FFRI
N\

76



Case study 1: CVE-2023-23533
The postinstall script of macOS InstallAssistant.pkg

SHARED_SUPPORT_PATH="${3}Applications/Install macOS Ventura beta.app/Contents/SharedSupport"
/bin/mkdir -p "${SHARED SUPPORT_PATH}"
/bin/chmod 0755 "${SHARED_SUPPORT_PATH}"

SOURCE_DEVICE=$(/usr/bin/stat -n -f '%d' "${PACKAGE_PATH}")
TARGET DEVICE=$(/usr/bin/stat -n -f '%d' "${SHARED SUPPORT PATH}")
if [ ${SOURCE_DEVICE} -eq ${TARGET DEVICE} ]; then
echo "Linking ${PACKAGE_PATH} into ${SHARED SUPPORT PATH}"
/bin/1n -fFh "${PACKAGE_PATH}" "${SHARED_ SUPPORT PATH}/SharedSupport.dmg"
/bin/chmod 0644 "${SHARED_SUPPORT_PATH}/SharedSupport.dmg"
/usr/sbin/chown -R root:wheel "${SHARED_SUPPORT_PATH}/SharedSupport.dmg"
else
echo "${PACKAGE_PATH} on different device than ${SHARED_SUPPORT_PATH} ... copying"
/bin/cp "${PACKAGE_PATH}" "${SHARED_SUPPORT_PATH}/SharedSupport.dmg"
fi

Jusr/bin/chflags -h norestricted "${SHARED SUPPORT_ PATH}/SharedSupport.dmg"




Case study 1: CVE-2023-23533
The postinstall script of macOS InstallAssistant.pkg

SHARED_SUPPORT_PATH="${3}Applications/Install macOS Ventura beta.app/Contents/SharedSupport"
/bin/mkdir -p "${SHARED SUPPORT_PATH}"
/bin/chmod 0755 "${SHARED_SUPPORT_PATH}"

SOURCE_DEVICE=$(/usr/bin/stat -n -f '%d' "${PACKAGE_PATH}")

TARGET DEVICE=$(/usr/bin/stat -n -f '%d' "${SHARED SUPPORT PATH}")

if [ ${SOURCE_DEVICE} -eq ${TARGET DEVICE} ]; then
echo "Linking ${PACKAGE_PATH} into ${SHARED SUPPORT PATH}"
/bin/1n -fFh "${PACKAGE_PATH}" "${SHARED_ SUPPORT PATH}/SharedSupport.dmg"
/bin/chmod 0644 "${SHARED_SUPPORT_PATH}/SharedSupport.dmg"
/usr/sbin/chown -R root:wheel "${SHARED_SUPPORT_PATH}/SharedSupport.dmg"

else
echo "${PACKAGE_PATH} on different device than ${SHARED_SUPPORT_PATH} ... copying"
/bin/cp "${PACKAGE_PATH}" "${SHARED_SUPPORT_PATH}/SharedSupport.dmg"

-h norestricted "${SHARED SUPPORT_ PATH}/SharedSu




Case study 1: CVE-2023-23533
The postinstall script of macOS InstallAssistant.pkg

SHARED_SUPPORT_PATH="${3}Applications/Install macOS Ventura beta.app/Contents/SharedSupport"
/bin/mkdir -p "${SHARED SUPPORT_PATH}"
/bin/chmod 0755 "${SHARED_SUPPORT_PATH}"

SOURCE_DEVICE=$(/usr/bin/stat -n -f '%d' "${PACKAGE_PATH}")

TARGET DEVICE=$(/usr/bin/stat -n -f '%d' "${SHARED SUPPORT PATH}")

if [ ${SOURCE_DEVICE} -eq ${TARGET DEVICE} ]; then
echo "Linking ${PACKAGE_PATH} into ${SHARED SUPPORT PATH}"
/bin/1n -fFh "${PACKAGE_PATH}" "${SHARED_ SUPPORT PATH}/SharedSupport.dmg"
/bin/chmod 0644 "${SHARED_SUPPORT_PATH}/SharedSupport.dmg"
/usr/sbin/chown -R root:wheel "${SHARED_SUPPORT_PATH}/SharedSupport.dmg"

else
echo "${PACKAGE_PATH} on different device than ${SHARED_SUPPORT_PATH} ... copying"
/bin/cp "${PACKAGE_PATH}" "${SHARED_SUPPORT_PATH}/SharedSupport.dmg"

ted "${SHARED_SUPPORT_PATH}/Sha




Case study 1: CVE-2023-23533 FFRL

The postinstall script of macOS InstallAssistant.pkg

#!/bin/

SHARED_SUPPORT_PATH="${3}Applications/Install macOS Ventura beta.app/Contents/SharedSupport"
/bin/mkdir -p "${SHARED_SUPPORT_PATH}"
/bin/chmod 0755 "${SHARED_SUPPORT_PATH}"

SOURCE_DEVICE=$(/usr/bin/stat -n -f '%d' "${PACKAGE_PATH}")
TARGET _DEVICE=$(/usr/bin/stat -n -f '%d' "${SHARED_SUPPORT_ PATH}")
if [ ${SOURCE_DEVIGidmmadmbaianoo Dol J. i o
echo "Linking
/bin/1n -fFh
/bin/chmod 06
/usr/sbin/cho
else
echo "${PACKAGE_PATH} on different device than ${SHARED_SUPPORT_PATH} ... copying"
/bin/cp "${PACKAGE_PATH}" "${SHARED_SUPPORT_PATH}/SharedSupport.dmg"

ted "${SHARED_SUPPORT_PATH}/Sha

80



@& Terminal Shell Edit View Window Help ] Q & MonDec19 13:00

install_assistant — bash — 86x24

NEOe=ES0REPB8-PORON QDB ERS




Apple’s fix FERL

Apple addressed this issue by updating Sandbox.kext

Apple gave me a generous bounty :)

Sandbox
Available for: macOS Ventura
Impact: An app may be able to modify protected parts of the file system
Description: A logic issue was addressed with improved checks.

CVE-2023-23533: Mickey Jin (@patchlt), Koh M. Nakagawa of FFRI Security, Inc., and Csaba Fitzl
(@theevilbit) of Offensive Security

https://support.apple.com/en-us/HT213670

82


https://support.apple.com/en-us/HT213670

Case study 2: CVE-2023-29166
The postinstall script of MXFPlugins.pkg

for TARGET_DIR in "$HOME/Library/Application Support/Compressor/Settings/MXF" \
"$HOME/Library/Application Support/Compressor/MXF"; do

SKIP_INSTALL=0

N=0

UNIQUE_TARGET_DIR="$TARGET DIR"
while [ -e "$UNIQUE_TARGET_DIR" 1; do

fusr/bin/diff -rq "$SOURCE_DIR" "$UNIQUE_TARGET_DIR"
if [ -eq @ 1; then
SKIP_INSTALL=1
break
fi
N="/bin/expr $N + 1°
UNIQUE_TARGET_DIR="$TARGET_DIR $N"
done

if [ $SKIP_INSTALL -eq @ 1; then

/usr/bin/sudo /bin/mkdir -p "$UNIQUE_TARGET_DIR"
/usr/bin/sudo /bin/cp -a "$SOURCE_DIR/" "$UNIQUE_TARGET_DIR/"
fi




Case study 2: CVE-2023-29166
The postinstall script of MXFPlugins.pkg

for TARGET_DIR in "$HOME/Library/Application Support/Compressor/Settings/MXF" \
"$HOME/Library/Application Support/Compressor/MXF"; do

SKIP_INSTALL=0

N=0

UNIQUE_TARGET_DIR="$TARGET DIR"
while [ -e "$UNIQUE_TARGET_DIR" 1; do

fusr/bin/diff -rq "$SOURCE_DIR" "$UNIQUE_TARGET_DIR"
if [ $7 -eq @ 1; then

SKIP_INSTALL=1

break

fi

N="/bin/expr $N + 1°
UNIQUE_TARGET_DIR="$TARGET_DIR $N"
done

if [ $SKIP_INSTALL -eq @ 1; then

/usr/bin/sudo /bin/mkdir —p "$UNIQUE_TARGET_DIR"
/usr/bin/sudo /bin/cp -a "$SOURCE_DIR/" "$UNIQUE_TARGET_DIR/"

fi




Case study 2: CVE-2023-29166
The postinstall script of MXFPlugins.pkg

for TARGET_DIR in "$HOME/Library/Application Support/Compressor/Settings/MXF" \
"$HOME/Library/Application Support/Compressor/MXF"; do

SKIP_INSTALL=0

N=0

UNIQUE_TARGET_DIR="$TARGET DIR"
while [ -e "$UNIQUE_TARGET_DIR" 1; do

fusr/bin/diff -rq "$SOURCE_DIR" "$UNIQUE_TARGET_DIR"
if [ $7 -eq @ 1; then
SKIP_INSTALL=1
break
fi
N="/bin/expr $N + 1°
UNIQUE_TARGET_DIR="$TARGET_DIR $N"
done

if [ $SKIP_INSTALL -eq @ 1; then

/usr/bin/sudo /bin/mkdir —p "$UNIQUE_TARGET_DIR"
/usr/bin/sudo /bin/cp -a "$SOURCE_DIR/" "$UNIQUE_TARGET_DIR/"
fi




Case study 2: CVE-2023-29166
The postinstall script of MXFPlugins.pkg

for TARGET_DIR in "$HOME/Library/Application Support/Compressor/Settings/MXF" \
"$HOME/Library/Application Support/Compressor/MXF"; do

SKIP_INSTALL=0
N=0

UNIQUE_TARGET_DIR="$TARGET DIR"
while [ -e "$UNIQUE_TARGET_DIR" 1; do

fusr/bin/diff -rq "$SOURCE_DIR" "$UNIQUE_TARGET_DIR"
if [ $7 -eq @ 1; then
SKIP_INSTALL=1
break
fi
N="/bin/expr $N + 1°
UNIQUE_TARGET_DIR="$TARGET_DIR $N"

done

if [ $SKIP_INSTALL -eq @ 1; then
/usr/bin/sudo /bin/mkdir -p "$UNIQUE TARGET DIR"
/usr/bin/sudo /bin/cp -a "$SOURCE_DIR/" "$UNIQUE_TARGET_DIR/"

fi




Winning the race ]

The postinstall script of MXFPlugins.pkg

for TARGET_DIR in "$HOME/Library/Application Support/Compressor/Settings/MXF" \ ///r
"$HOME/Library/Application Support/Compressor/MXF"; do

$SOURCE_DIR \
file_a

SKIP_INSTALL=0 fl l e—b

N=0

UNIQUE_TARGET _DIR="$TARGET_DIR"

while [ —e "$UNIQUE_TARGET_DIR" ]; do

fusr/bin/diff -rq "$SOURCE_DIR" "$UNIQUE_TARGET_DIR" \\\‘7 4///
if [ $7 -eq @ 1; then

SKIP_INSTALL=1

break

. . ’ ~
3[51(/)3E_'/I'AREETf:IRj?pTARGET_DIR $N" $ U N lQU E_TA RG ET_DI R
done

if [ $SKIP_INSTALL -eq @ 1; then

/usr/bin/sudo /bin/mkdir —p "$UNIQUE_TARGET_DIR"
/usr/bin/sudo /bin/cp -a "$SOURCE_DIR/" "$UNIQUE_TARGET_DIR/"
fi




Winning the race

The postinstall script of MXFPlugins.pkg

for TARGET_DIR in "$HOME/Library/Application Support/Compressor/Settings/MXF" \
"$HOME/Library/Application Support/Compressor/MXF"; do

SKIP_INSTALL=0
N=0

UNIQUE_TARGET_DIR="$TARGET DIR"
while [ -e "$UNIQUE_TARGET_DIR" 1; do

fusr/bin/diff -rq "$SOURCE_DIR" "$UNIQUE_TARGET_DIR"
if [ $7 -eq @ 1; then
SKIP_INSTALL=1
break
fi
N="/bin/expr $N + 1°
UNIQUE_TARGET_DIR="$TARGET_DIR $N"
done

if [ $SKIP_INSTALL -eq @ 1; then
/usr/bin/sudo /bin/mkdir -p "$UNIQUE_TARGET_DIR"

/usr/bin/sudo /bin/cp -a "$SOURCE_DIR/" "$UNIQUE_TARGET_DIR/"

fi

K $SOURCE_DIR

file_

N

/$UN IQUE_TARGET_DI R\

88



Winning the race

The postinstall script of MXFPlugins.pkg

for TARGET_DIR in "$HOME/Library/Application Support/Compressor/Settings/MXF" \
"$HOME/Library/Application Support/Compressor/MXF"; do

SKIP_INSTALL=0
N=0

UNIQUE_TARGET_DIR="$TARGET DIR"
while [ -e "$UNIQUE_TARGET_DIR" 1; do

fusr/bin/diff -rq "$SOURCE_DIR" "$UNIQUE_TARGET_DIR"
if [ $7 -eq @ 1; then
SKIP_INSTALL=1
break
fi
N="/bin/expr $N + 1°
UNIQUE_TARGET_DIR="$TARGET_DIR $N"
done

if [ $SKIP_INSTALL -eq @ 1; then

/usr/bin/sudo /bin/mkdir -p "$UNIQUE_TARGET_DIR"
/usr/bin/sudo /bin/cp -a "$SOURCE_DIR/" "$UNIQUE_TARGET_DIR/"
fi

-

N

$SOURCE_DI
file_a —
file_ b

R )

K$UNIQUE_TARGE

j

_DIR

file_a «

89



Winning the race

The postinstall script of MXFPlugins.pkg

for TARGET_DIR in "$HOME/Library/Application Support/Compressor/Settings/MXF" \ K
"$HOME/Library/Application Support/Compressor/MXF"; do

$SOURCE_DIR \
file_a —

SKIP_INSTALL=0 fl l e—b

N=0

UNIQUE_TARGET _DIR="$TARGET_DIR"

while [ —e "$UNIQUE_TARGET_DIR" ]; do

fusr/bin/diff -rq "$SOURCE_DIR" "$UNIQUE_TARGET_DIR" k /

if [ $7 -eq @ 1; then
SKIP_INSTALL=1
break

fi
N="/bin/expr $N + 1°

UNIQUE_TARGET_DIR="$TARGET_DIR $N" $ U N lQU E—TA RG E T—DI R
done f||e_a -

if [ $SKIP_INSTALL -eq @ 1; then

/usr/bin/sudo /bin/mkdir —p "$UNIQUE_TARGET_DIR"
/usr/bin/sudo /bin/cp -a "$SOURCE_DIR/" "$UNIQUE_TARGET_DIR/"
fi




Winning the race

The postinstall script of MXFPlugins.pkg

for TARGET_DIR in "$HOME/Library/Application Support/Compressor/Settings/MXF" \ /
"$HOME/Library/Application Support/Compressor/MXF"; do

$SOURCE_DIR \
file_a
file_ b =

SKIP_INSTALL=0
N=0

UNIQUE_TARGET_DIR="$TARGET DIR"
while [ -e "$UNIQUE_TARGET_DIR" 1; do

fusr/bin/diff -rq "$SOURCE_DIR" "$UNIQUE_TARGET_DIR" \ /

if [ $7 -eq @ 1; then
SKIP_INSTALL=1
break

fi

N="/bin/expr $N + 1° ////7

UNIQUE_TARGET_DIR="$TARGET_DIR $N" $ U N lQU E—TA RG E T—DI R
done file_a

-

if [ $SKIP_INSTALL -eq @ 1; then

/usr/bin/sudo /bin/mkdir —p "$UNIQUE_TARGET_DIR"
/usr/bin/sudo /bin/cp -a "$SOURCE_DIR/" "$UNIQUE_TARGET_DIR/"
fi




Winning the race

The postinstall script of MXFPlugins.pkg

for TARGET_DIR in "$HOME/Library/Application Support/Compressor/Settings/MXF" \
"$HOME/Library/Application Support/Compressor/MXF"; do

SKIP_INSTALL=0
N=0

UNIQUE_TARGET_DIR="$TARGET DIR"
while [ -e "$UNIQUE_TARGET_DIR" 1; do

fusr/bin/diff -rq "$SOURCE_DIR" "$UNIQUE_TARGET_DIR"
if [ $7 -eq @ 1; then
SKIP_INSTALL=1
break
fi
N="/bin/expr $N + 1°
UNIQUE_TARGET_DIR="$TARGET_DIR $N"
done

if [ $SKIP_INSTALL -eq @ 1; then
/usr/bin/sudo /bin/mkdir -p "$UNIQUE_TARGET_DIR"

/usr/bin/sudo /bin/cp -a "$SOURCE_DIR/" "$UNIQUE_TARGET_DIR/"

fi

K $SOURCE_DI
file_a
file_ b =

N

R )

/$UNIQUE_TARGE
file_a

J

_DIR

-




Apple’s fix FERL

Apple updated the pkg and changed the postinstall script.

if [ $SKIP_INSTALL -eq @ ]; then
/usr/bin/sudo /bin/mkdir -p "$UNIQUE_TARGET_DIR"

/usr/bin/sudo /usr/bin/rsync "$SOURCE_DIR/*" "$UNIQUE_TARGET_DIR/"

fi

Pro Video Formats
Available for: macOS 10.14.5 and later
Impact: A user may be able to elevate privileges

Description: A logic issue was addressed with improved state management.

CVE-2023-29166: Koh M. Nakagawa (@tsunekOh)

https://support.apple.com/en-us/HT213882

93


https://support.apple.com/en-us/HT213882

And more...

Some issues are still being addressed...

FFRI
N\

94



My thoughts

The pre/postinstall scripts of all Apple-signed pkgs do not require
the SIP-bypass primitive.

| think some pkgs should be executed by installd (not system_installd).

Apple should review the code of the pre/postinstall scripts of Apple-
signhed pkgs.
They appear not to pay attention to these, even though vulnerabilities in these
scripts are dangerous.

FFRI
N\

95



Overview of macOS security & privacy mechanisms

Clicking a malicious Executing
app bundle unsandboxed code
Gatekeeper | | SI P p— W
I\/Iodlfylng Loading
system files kexts
App Sandbox TCC XProtect
Clicking a macro-embedded doc
(executing sandboxed code)
, Executlng
AA ‘ i ' 2nd stage

Accessing sensitive info 9%



Overview of macOS security & privacy mechanisms

Clicking a malicious Executing
app bundle unsandboxed code
| Gatekeeper — .
IEEEes—— | E——
‘ Bypassed
\ App Sandbox  TCC (but only filesystem

Clicking a macro-embedded doc restriction)

(executing sandboxed code)

Accessing sensitive info

Executing
2d stage
malware

FFRI
N\

97



Summary & Takeaways

FFRI
N\

98



Summary

Overview of macOS security & privacy mechanisms
New bypass techniques for these mechanisms
Typical 3" party vulns that allow an attacker to bypass these mechanisms

FFRI
N\

99



Takeaways FERL

For Red Teamers
PoC code is available on GitHub (https://github.com/FFRI/PoC-public)

 This code will be helpful for future red team exercises targeting macOS.

For Security Researchers

Logic bugs are quite powerful for bypassing various security & privacy
mechanisms on macOS.

« As PAC enforcement is enabled on Apple Silicon Mac, exploiting memory corruption
vulnerabilities is becoming more difficult.

For macOS App Developers
Please check whether your Electron-based app is built with secure build

configurations.

* An app built with default configurations has vulnerabilities that allow an attacker to bypass
TCC and Gatekeeper.

100



Takeaways FERL

For Red Teamers
PoC code is available on GitHub (https://github.com/FFRI/PoC-public)

 This code will be helpful for future red team exercises targeting macOS.

For Security Researchers

Logic bugs are quite powerful for bypassing various security & privacy
mechanisms on macOS.

« As PAC enforcement is enabled on Apple Silicon Mac, exploiting memory corruption
vulnerabilities is becoming more difficult.

For macOS App Developers
Please check
configuration| el but not least, please keep your

* An app built macOS up to date! ker to bypass
TCC and Gate

uild

101



FFRI
N\

QA

X @tsunek0Oh

102





