
1

FFRI Security, Inc.
https://www.ffri.jp

FFRI Security, Inc.

Bypassing macOS Security & Privacy
Mechanisms: From Gatekeeper to

System Integrity Protection

2

$ whoami – Koh M. Nakagawa

• Security Researcher at FFRI Security, Inc.

• Mainly conducting vulnerability research on macOS

• Earned more than $50k in various bug bounty programs since last year

• One of MSRC Most Valuable Security Researchers 2023

• Gave talks at Black Hat Briefings (EU 2020 and Asia 2023) & CODE BLUE (2021)

@tsunek0h

3

Fundamental concepts of macOS security

System Integrity Protection (SIP) (a.k.a. rootless)

Introduced from OS X El Captain

Restricts some dangerous operations, such as …

• Modifying system files (e.g., files of the /bin directory)

• Loading untrusted kernel extensions

• Debugging system processes

Even the root user cannot perform these dangerous operations, unlike in a

traditional *NIX security model.

4

Fundamental concepts of macOS security

Code signature & entitlements
macOS security & privacy mechanisms heavily rely on code signature & entitlements.

• “An entitlement is a right or privilege that grants an executable particular capabilities.”

Some operations are not permitted without proper entitlements.

• Example: Only Apple binaries with proper private entitlements can modify SIP-protected files.

5

Overview of macOS security & privacy mechanisms

Clicking a macro-embedded doc

(executing sandboxed code)

Clicking a malicious

app bundle

Executing

unsandboxed code

Accessing sensitive info

Modifying

system files

Loading

kexts

Executing

2nd stage

malware

6

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Accessing sensitive info

Modifying

system files

Loading

kexts

Executing

2nd stage

malware

Gatekeeper

App Sandbox

Clicking a malicious

app bundle

Clicking a macro-embedded doc

(executing sandboxed code)

7

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Accessing sensitive info

Modifying

system files

Loading

kexts

Executing

2nd stage

malware

Gatekeeper

App Sandbox TCC

Clicking a malicious

app bundle

Clicking a macro-embedded doc

(executing sandboxed code)

8

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Accessing sensitive info

Modifying

system files

Loading

kexts

Executing

2nd stage

malware

Gatekeeper

App Sandbox TCC
XProtect

Clicking a malicious

app bundle

Clicking a macro-embedded doc

(executing sandboxed code)

9

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Modifying

system files

Loading

kexts

Gatekeeper

App Sandbox TCC

SIP

XProtect

Accessing sensitive info

Executing

2nd stage

malware

Clicking a malicious

app bundle

Clicking a macro-embedded doc

(executing sandboxed code)

10

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Modifying

system files

Loading

kexts

Gatekeeper

App Sandbox TCC

SIP

XProtect

Accessing sensitive info

Executing

2nd stage

malware
Goal: Breaking all these mechanisms

Clicking a malicious

app bundle

Clicking a macro-embedded doc

(executing sandboxed code)

11

Gatekeeper bypass

12

What is Gatekeeper?

Apple Platform Security

macOS includes a security technology called Gatekeeper, which is

designed to help ensure that only trusted software runs on a user’s

Mac.

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

13

What is Gatekeeper?

For an app on the App Store, Apple reviews each app and signs it to make

sure that it has not been tampered with or altered.

Gatekeeper verifies the app has been signed by the App Store.

For an app not on the App Store, Gatekeeper verifies the following:

• The app is from an identified developer (by checking the code signature).

• The app has not been altered.

• The app is “notarized” by Apple.

What is “notarized”?

14

Notarization

“Notarization is a malware scanning service provided by Apple.”

An app approved by the Notarization service is “notarized.”

• This app is regarded to be free of malicious content by Apple.

App developers should submit their app to Notarization before distributing it.

• A ticket is awarded once the app is approved.

• Gatekeeper verifies the app based on the awarded ticket.

• App developers can optionally staple the ticket to the app.

✓ This enables Gatekeeper to verify the app even if the user is offline.

There is no “ignore” option.

A user cannot execute this

app by ignoring this warning.

15

Quarantine attribute

Extended file attribute named com.apple.quarantine

Which files are quarantined?

• Downloaded files

• Files dropped by sandboxed apps

Gatekeeper does not check apps without com.apple.quarantine

• Because macOS regards files without com.apple.quarantine as local ones

flags;timestamp;agent;UUID

Extended attributes of the downloaded app

16

APIs related to the quarantine mechanism
libquarantine is the user-mode interface of the quarantine mechanism.

Two classes of functions (qtn_file_* and qtn_proc_*) are exported.

• qtn_file_* are used for dealing with the quarantine policy on a per-file basis.

✓ e.g., qtn_file_apply_to_path adds the quarantine attribute to a specified path.

• qtn_proc_* are used for dealing with the quarantine policy on a per-process basis.

✓ e.g., All files created by a process calling qtn_proc_apply_to_self are quarantined.

17

How to use quarantine APIs

char* input_file = argv[1];

// initialize quarantine info
qtn_file_t qinfo = _qtn_file_alloc();
const char* qdata =
"q/0083;60bca5e1;Safari;ED038CA1-1FD3-4A6A-B3DD-EF64B565C027";
_qtn_file_init_with_data(qinfo, qdata, strlen(qdata));

// add quarantine info to the file
_qtn_file_apply_to_path(qinfo, input_file);

// free quarantine info
_qtn_file_free(qinfo);

18

Propagating the quarantine attribute

Archive Utility calls
qtn_file_apply_to_path to

propagate com.apple.quarantine

to the extracted files

Extract the zip

Quarantined The extracted

app is also

quarantined

19

My initial Gatekeeper bypass idea

Can we prevent Archive Utility from propagating quarantine attr?

I checked which files are not quarantined by qtn_file_apply_to_path

Extract the zip, but

fail to propagate

quarantine attr

Quarantined Not quarantined

20

BSD file flag

macOS has components originating from BSD.

File flag is one of the BSD-derived features.

• Various flags can be specified to a file (https://man.freebsd.org/cgi/man.cgi?chflags(1)).

• The uchg flag captured my attention.

• This flag is typically used for locking a file.

Can qtn_file_apply_to_path add

com.apple.quarantine to a file having uchg?

https://man.freebsd.org/cgi/man.cgi?chflags(1)

21

Experiment

The file without uchg is quarantined

22

Experiment

However, after adding uchg to this file…

…the file with uchg is not quarantined!

If we can add the uchg flag to an app bundle,

we can bypass the Gatekeeper check.

23

How to retain uchg

Compressing an app to a ZIP file cannot retain file flags :(

The extracted files do not have uchg.

uchg is missing :(

24

How to retain uchg

However, compressing an app to a tar.gz file can retain file flags :)

The extracted files have uchg.

uchg is here :)

25

Steps to exploit

• Create a directory containing an app.

• Add uchg to the app.

• Compress the app to a tar.gz file.

• Send the tar.gz file to a victim.

• The victim opens the tar.gz file and runs the app.

• Gatekeeper does not check the app.

26

27

Apple’s fix

qtn_file_apply_to_path can add the quarantine attribute to a file having uchg.

Apple did not assign CVE(?), but added my name to Additional Recognition.

https://support.apple.com/en-us/HT213670

https://support.apple.com/en-us/HT213670

28

Disclosure timeline

2022/11/28: I reported this vulnerability to Apple.

2022/11/30: I sent additional details.

2022/12/03: Apple validated the report.

2023/03/27: Apple fixed this vulnerability in macOS Ventura 13.3.

29

Bonus: App Sandbox bypass

This vulnerability can be used for bypassing App Sandbox.

Because we can prevent files dropped by sandboxed apps from adding the

quarantine attribute

• Drop an app bundle and run it using the “open” command.

• The app is executed under the unsandboxed environment.

30

Related vulnerability: CVE-2022-42821

@yo_yo_yo_jbo at Microsoft reported a very similar vulnerability.

He abused AppleDouble & ACL to prevent Safari from adding the quarantine attr

• “Gatekeeper’s Achilles heel: Unearthing a macOS vulnerability”

However, I reported the file flag trick to Apple before the disclosure of this

vulnerability.

• Moreover, Apple’s fix of CVE-2022-42821 was incomplete and still vulnerable to my trick in

Ventura 13.

• The ultimate fix for my trick was applied in Ventura 13.3.

https://www.microsoft.com/en-us/security/blog/2022/12/19/gatekeepers-achilles-heel-unearthing-a-macos-vulnerability/

31

Typical Gatekeeper bypass vulns in 3rd party apps

Typical Gatekeeper bypass vulns in 3rd party apps

The root cause is missing LSFileQuarantineEnabled in the Info.plist file.

• This is “a Boolean value indicating whether the files this app creates are quarantined by

default.”

Example 1: Thunderbird CVE-2022-3155 (credited to me)

• Surprisingly, Thunderbird does not enable LSFileQuarantineEnabled for long.

Example 2: (many) Electron-based apps

• Electron-based apps typically do not enable LSFileQuarantineEnabled

✓ Because LSFileQuarantineEnabled breaks the auto update feature of Electron

• Please make sure that downloaded files are quarantined.

✓ gatemaker is a possible solution.

https://developer.apple.com/documentation/bundleresources/information_property_list/lsfilequarantineenabled?language=objc
https://github.com/electron-userland/electron-builder/issues/3754
https://github.com/javan/gatemaker

32

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Modifying

system files

Loading

kexts

Gatekeeper

App Sandbox TCC

SIP

XProtect

Accessing sensitive info

Executing

2nd stage

malware

Clicking a macro-embedded doc

(executing sandboxed code)

Clicking a malicious

app bundle

33

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Modifying

system files

Loading

kexts

Gatekeeper

App Sandbox TCC

SIP

XProtect

Accessing sensitive info

Executing

2nd stage

malware

Clicking a malicious

app bundle

Clicking a macro-embedded doc

(executing sandboxed code)
Bypassed

34

TCC bypass

35

What is TCC?

TCC is a privacy mechanism that protects a user’s sensitive information.

The sensitive information includes private folders, camera, and microphone.

Even the root cannot access the sensitive information without the user’s explicit

consent.

36

What is TCC?

37

How does TCC work?

TCC is enforced by two tccd instances.

One runs as the root and the other runs as a logged-in user.

There are two configuration files of TCC.

• /Library/Application Support/com.apple.TCC/TCC.db for the system (SIP-protected)

• ~/ Library/Application Support/com.apple.TCC/TCC.db for the logged-in user (TCC-protected)

✓ An app with Full Disk Access can modify this TCC.db

If we can modify these database files directly, we can bypass TCC.

• However, these database files are SIP-protected or TCC-protected.

38

Previous research on TCC bypass techniques

TCC bypass techniques are classified into the following categories:

Running code in the context of other approved (or entitled) apps

• Example 1: Dylib injection through DYLD_INSERT_LIBRARIES (e.g., CVE-2020-24259)

• Example 2: Dylib injection through plugins (e.g., CVE-2020-27937)

Fooling tccd

• Example: Mount over the TCC directory and force tccd to use a fake TCC.db (CVE-2021-30808)

Other neat ideas

• Example 1: Abuse App Translocation (CVE-2021-30782)

• Example 2: Abuse Time Machine Snapshot (CVE-2020-9771)

• For other techniques, see the BHUSA 2021 and BHEU 2022 talks by @theevilbit and @_r3ggi

https://blackhat.com/us-21/briefings/schedule/#-ways-to-bypass-your-macos-privacy-mechanisms-23133
https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-mechanisms-29272

39

Previous research on TCC bypass techniques

TCC bypass techniques are classified into the following categories:

Running code in the context of other approved (or entitled) apps

• Example 1: Dylib injection through DYLD_INSERT_LIBRARIES (e.g., CVE-2020-24259)

• Example 2: Dylib injection through plugins (e.g., CVE-2020-27937)

Fooling tccd

• Example: Mount over the TCC directory and force tccd to use a fake TCC.db (CVE-2021-30808)

Other neat ideas

• Example 1: Abuse App Translocation (CVE-2021-30782)

• Example 2: Abuse Time Machine Snapshot (CVE-2020-9771)

• For other techniques, see the BHUSA 2021 and BHEU 2022 talks by @theevilbit and @_r3ggi

Here, I will show a technique classified into this category.

https://blackhat.com/us-21/briefings/schedule/#-ways-to-bypass-your-macos-privacy-mechanisms-23133
https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-mechanisms-29272

40

How to inject code

Code injection is strictly prohibited on macOS.

Dylib injection/hijacking

• Library validation is typically enabled for apps.

• It prevents an app from loading untrusted dylibs, and hence, dylib injection/hijacking does

not work.

Thread injection

• Like CreateRemoteThread type injection on Windows

• However, this works if the app has the get-task-allow entitlement.

• Few apps have the get-task-allow entitlement.

Other code injection techniques on macOS?

• Technique using saved state (CVE-2021-30873 by @xnyhps), but this is currently fixed

41

How to inject code

Code injection is strictly prohibited on macOS.

Dylib injection/hijacking

• Library validation is typically enabled for apps.

• It prevents an app from loading untrusted dylibs, and hence, dylib injection/hijacking does

not work.

Thread injection

• Like CreateRemoteThread type injection on Windows

• However, this works if the app has the get-task-allow entitlement.

• Few apps have the get-task-allow entitlement.

Other code injection techniques on macOS?

• Technique using saved state (CVE-2021-30873 by @xnyhps), but this is currently fixed

I developed a new code injection technique abusing Rosetta 2

42

AOT poisoning

Code injection poisoning Rosetta 2 binary translation cache

Rosetta 2 is a translation mechanism to execute x86_64 code on Apple Silicon.

• Translated artifacts (AOT files) are saved and cached.

• Rosetta 2 reuses these artifacts when a user runs the same app again.

• Rosetta 2 provides translate_tool

✓ This is a CLI tool to enable the creation of an AOT file without running the executable.

✓ Located at the /usr/libexec/rosetta directory

43

Rosetta 2 internals: AOT lookup hash

Rosetta 2 uses the dedicated hash for checking whether the app

was previously translated.

Referred to as “AOT lookup hash” in this talk

A SHA-256 hash is generated based on

• Mach-O header and load commands

• ctime, mtime, and crtime

• file path

• uid and gid

44

Rosetta 2 internals: AOT lookup hash

SIP-protected

a.out.aot

124abc…

hoga.out.aot

abc341…

fuga.out.aot

bdd4de…

…
a.out

hoge.out.aot

f3d4de…

fuge.out.aot

c314de…

Run a.out

45

Rosetta 2 internals: AOT lookup hash

SIP-protected

a.out.aot

124abc…

hoga.out.aot

abc341…

fuga.out.aot

bdd4de…

…
a.out

hoge.out.aot

f3d4de…

fuge.out.aot

c314de…
124abc…

Rosetta 2 generates

an AOT lookup hash

The generated

AOT lookup hash

46

Rosetta 2 internals: AOT lookup hash

SIP-protected

a.out.aot

124abc…

hoga.out.aot

abc341…

fuga.out.aot

bdd4de…

…
a.out

hoge.out.aot

f3d4de…

fuge.out.aot

c314de…
124abc…

Rosetta 2 looks for the AOT file

corresponding to this hash

The generated

AOT lookup hash

47

Rosetta 2 internals: AOT lookup hash

SIP-protected

a.out.aot

124abc…

hoga.out.aot

abc341…

fuga.out.aot

bdd4de…

…
a.out

hoge.out.aot

f3d4de…

fuge.out.aot

c314de…
124abc…

The generated

AOT lookup hash

Found

48

Rosetta 2 internals: AOT lookup hash

SIP-protected

a.out.aot

124abc…

hoga.out.aot

abc341…

fuga.out.aot

bdd4de…

…
a.out

hoge.out.aot

f3d4de…

fuge.out.aot

c314de…
124abc…

Rosetta 2 maps the AOT

file for the execution

The generated

AOT lookup hash

49

Core idea of AOT poisoning

Hash collision attack on an AOT lookup hash

The AOT lookup hash is not generated based on the entire contents of an

executable.

• The AOT lookup hash is a SHA-256 hash generated based on…

✓Mach-O header and load commands

✓ ctime, mtime, and crtime

✓ file path

✓ uid and gid

• The code section is not used for generating this hash.

If we can modify the code in an executable while keeping its AOT lookup hash

unchanged, we can force Rosetta 2 to use a different AOT file upon execution.

50

AOT poisoning

SIP-protected

hoga.out.aot

abc341…

fuga.out.aot

bdd4de…

…
a.out

hoge.out.aot

f3d4de…

fuge.out.aot

c314de…

Inject shellcode

51

AOT poisoning

SIP-protected

a.out.aot

124abc…

hoga.out.aot

abc341…

fuga.out.aot

bdd4de…

…
a.out

hoge.out.aot

f3d4de…

fuge.out.aot

c314de…

Create an AOT file for this

using translate_tool

52

AOT poisoning

SIP-protected

a.out.aot

124abc…

hoga.out.aot

abc341…

fuga.out.aot

bdd4de…

…
a.out

hoge.out.aot

f3d4de…

fuge.out.aot

c314de…

Restore to the original file but keep

the AOT lookup hash unchanged

53

AOT poisoning

SIP-protected

a.out.aot

124abc…

hoga.out.aot

abc341…

fuga.out.aot

bdd4de…

…
a.out

hoge.out.aot

f3d4de…

fuge.out.aot

c314de…
124abc…

The generated

AOT lookup hash

As the AOT lookup hash is the

same, Rosetta 2 uses the poisoned

AOT file for the execution

54

Core idea of AOT poisoning

How do we modify a code section while keeping the AOT lookup unchanged?

Idea: Restore mtime after modifying the file

• However, modifying the timestamp always updates ctime (at least on the APFS filesystem).

• As the AOT lookup hash is generated based on ctime, mtime, and crtime, modifying the

timestamp changes the AOT lookup hash…

The AOT lookup hash is a SHA-256 hash generated based on…

• Mach-O header and load commands

• ctime, mtime, and crtime

• file path

• uid and gid

Of course, modifying the file

updates mtime

55

Core idea of AOT poisoning

How do we modify a code section while keeping the AOT lookup unchanged?

Idea: Restore mtime after modifying the file

• However, modifying the timestamp always updates ctime (at least on the APFS filesystem).

• As the AOT lookup hash is generated based on ctime, mtime, and crtime, modifying the

timestamp changes the AOT lookup hash…

The AOT lookup hash is a SHA-256 hash generated based on…

• Mach-O header and load commands

• ctime, mtime, and crtime

• file path

• uid and gid

Of course, modifying the file

updates mtime

But how about other

filesystems?

56

Filesystem downgrade trick

mtime ctime crtime

Timestamps of FAT32 filesystem

ctime is not defined on FAT32!

-> Modifying mtime does not

update ctime

If we copy an app to the mounted FAT32 dmg, we can modify

a code section while keeping the AOT lookup hash unchanged.

https://www.sans.org/white-papers/36842/

https://www.sans.org/white-papers/36842/

57

Steps to exploit

• Find a TCC-approved app.

• Create a FAT32 dmg and mount it.

• Copy the approved app to the mounted point.

• Inject shellcode into it.

• Run translate_tool to create an AOT file.

• Restore the target executable to the original executable.

• Restore the timestamps.

• Run the executable.

• We can execute code in the context of the approved app!😎

For more details, see my Black Hat Asia 2023 talk slides

https://www.blackhat.com/asia-23/briefings/schedule/#dirty-bin-cache-a-new-code-injection-poisoning-binary-translation-cache-30907

58

59

Apple’s fix

Apple addressed this issue in macOS Ventura 13.

CVE-2022-42789 is assigned.

• We no longer use the AOT poisoning for a signed executable.

• However, we still use this technique for a non-signed executable :(

Apple gave me a generous bounty :)

https://support.apple.com/en-us/HT213488

https://support.apple.com/en-us/HT213488

60

Bonus: XProtect bypass

This code injection allowed an attacker to bypass XProtect.

XProtect scans an x86_64 executable only when it is launched.

• It does not scan an executable when an attacker generates the AOT file using translate_tool

• If an attacker injects code into a benign executable, he/she can bypass the XProtect scan.

Apple also fixed this issue in macOS Ventura 13.4.

Now, XProtect scans an x86_64 executable when its AOT file is generated.

https://support.apple.com/en-us/HT213758

https://support.apple.com/en-us/HT213758

61

About 3rd party apps

Code injection vulnerabilities of TCC bypass in 3rd party apps

Electron-based apps that do not disable ELECTRON_RUN_AS_NODE

• Can inject any JavaScript code by specifying ELECTRON_RUN_AS_NODE

• Example: Chatwork Desktop App (CVE-2023-32546, currently fixed, credited to me)

• Please disable ELECTRON_RUN_AS_NODE by using Electron Fuse

For other issues of Electron-based apps, please see the following talk and post:

• ELECTRONizing macOS privacy by @_r3ggi

• Abusing Electron apps to bypass macOS’ security controls by @_r3ggi

https://www.electronjs.org/docs/latest/api/environment-variables#electron_run_as_node
https://www.electronjs.org/docs/latest/tutorial/fuses
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Wojciech%20Regu%C5%82a%20-%20ELECTRONizing%20macOS%20privacy%20-%20a%20new%20weapon%20in%20your%20red%20teaming%20armory.pdf
https://wojciechregula.blog/post/abusing-electron-apps-to-bypass-macos-security-controls/

62

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Modifying

system files

Loading

kexts

Gatekeeper

App Sandbox TCC

SIP

XProtect

Accessing sensitive info

Executing

2nd stage

malware

Clicking a macro-embedded doc

(executing sandboxed code)

Clicking a malicious

app bundle

63

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Modifying

system files

Loading

kexts

Gatekeeper

App Sandbox TCC

SIP

XProtect

Accessing sensitive info

Executing

2nd stage

malware

Bypassed

Clicking a macro-embedded doc

(executing sandboxed code)

Clicking a malicious

app bundle

64

SIP bypass

65

What is System Integrity Protection (SIP)?

System Integrity Protection (SIP)

Restricts some dangerous operations, such as …

• Modifying system files

• Loading untrusted kernel extensions

• Debugging system processes in user mode

• Kernel debugging

Even the root user cannot perform these dangerous operations.

• The root user is not GOD on macOS.

To disable SIP, a user needs to restart his/her Mac device in Recovery mode.

• However, it requires physical access to the Mac device.

66

More about SIP

SIP is configured through NVRAM variables.

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-

macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/

https://github.com/apple-oss-distributions/xnu/blob/main/bsd/sys/csr.h#L41-L54

NVRAM bit Description

CSR_ALLOW_UNTRUSTED_KEXTS Controls the loading of untrusted kernel extensions

CSR_ALLOW_UNRESTRICTED_FS Controls write access to restricted filesystem locations

CSR_ALLOW_TASK_FOR_PID
Controls whether to allow getting a task port for

Apple processes (that is, invoke the task_for_pid API)

CSR_ALLOW_UNRESTRICTED_NVRAM Controls unrestricted NVRAM access

CSR_ALLOW_KERNEL_DEBUGGER Controls whether to allow kernel debugging

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/sys/csr.h#L41-L54

67

More about SIP

SIP is configured through NVRAM variables.

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-

macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/

https://github.com/apple-oss-distributions/xnu/blob/main/bsd/sys/csr.h#L41-L54

NVRAM bit Description

CSR_ALLOW_UNTRUSTED_KEXTS Controls the loading of untrusted kernel extensions

CSR_ALLOW_UNRESTRICTED_FS Controls write access to restricted filesystem locations

CSR_ALLOW_TASK_FOR_PID
Controls whether to allow getting a task port for

Apple processes (that is, invoke the task_for_pid API)

CSR_ALLOW_UNRESTRICTED_NVRAM Controls unrestricted NVRAM access

CSR_ALLOW_KERNEL_DEBUGGER Controls whether to allow kernel debugging

My focus in this talk

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/sys/csr.h#L41-L54

68

SIP filesystem restrictions

Which files are protected by SIP?

Files listed in /System/Library/Sandbox/rootless.conf

• On boot, rootless-init applies file system restrictions to these files.

Protected files have the restricted file flag.

• You can check this by running the ls -lO command.

• An attacker cannot attach the restricted file flag to a file manually.

69

Why is SIP bypass so critical?

SIP bypass always means Full TCC bypass

As described in Mickey Jin's write-up

Because we can modify the SIP-protected TCC database file with this primitive

An attacker can create undeletable malware with this primitive.

Thus, an attacker gains powerful persistence with an SIP bypass vulnerability.

• Even XProtect cannot remove this malware because it does not have SIP-related entitlements.

https://jhftss.github.io/CVE-2022-26712-The-POC-For-SIP-Bypass-Is-Even-Tweetable/

70

Some SIP-related entitlements

Entitlement Description

com.apple.rootless.install Completely bypasses SIP filesystem checks

com.apple.rootless.install.heritable Inherits com.apple.rootless.install to child

processes

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-

vulnerability-shrootless-that-could-bypass-system-integrity-protection/

Only Apple binaries can have these private entitlements.

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/

71

Apple binary with SIP-related entitlements

system_installd

"system_installd is used by the system during package installation.“

• However, this daemon is used for an Apple-signed macOS pkg installation.

✓ For 3rd party package installation, installd is used instead.

✓Of course, installd does not have SIP-related entitlements.

…

system_installd has com.apple.rootless.install.heritable

72

Apple software package (.pkg)

PKG is an XAR archive format.

It is commonly used for software installation on macOS.

A user can install macOS pkg file by

• Clicking the pkg file and following the instructions

• Running the installer command

73

macOS PKG components

pkgutil --expand Safari16.5BigSurAuto.pkg /tmp/Safari

74

macOS PKG components

pkgutil --expand Safari16.5BigSurAuto.pkg /tmp/Safari

Payload refers to actual

package contents, which is

typically compressed in a gzip

format

75

macOS PKG components

pkgutil --expand Safari16.5BigSurAuto.pkg /tmp/Safari

Scripts is an optional

directory containing the

scripts executed during

the installation.

The postinstall script is

executed after the

installation.

The preinstall script is

executed before the

installation.

76

Pre/postinstall scripts

These scripts of an Apple-signed pkg are executed by

system_installd

Recall that system_installd has com.apple.rootless.install.heritable

• The scripts can bypass SIP filesystem checks!

Vulnerabilities in these scripts lead to SIP bypass.

Let’s hunt for bugs in the pre/postinstall scripts of Apple-signed pkg.

77

Case study 1: CVE-2023-23533

The postinstall script of macOS InstallAssistant.pkg

78

Case study 1: CVE-2023-23533

The postinstall script of macOS InstallAssistant.pkg

A user in an admin group

can modify this file
Path of this pkg

79

Case study 1: CVE-2023-23533

The postinstall script of macOS InstallAssistant.pkg

If we change this file to a

symlink, cp follows the symlink
We can control this file after

the package extraction

80

Case study 1: CVE-2023-23533

The postinstall script of macOS InstallAssistant.pkg

If we change this file to a

symlink, cp follows the symlink
We can control this file after

the package extraction

We can control the src and dst files, and thus,

we can overwrite an SIP-protected file with our

controllable data.

81

82

Apple’s fix

Apple addressed this issue by updating Sandbox.kext

Apple gave me a generous bounty :)

https://support.apple.com/en-us/HT213670

https://support.apple.com/en-us/HT213670

83

Case study 2: CVE-2023-29166

The postinstall script of MXFPlugins.pkg

84

Case study 2: CVE-2023-29166

The postinstall script of MXFPlugins.pkg

A similar issue exists here.

We can control both the src

($SOURCE_DIR) and dst

($UNIQUE_TARGET_DIR) directories.

85

Case study 2: CVE-2023-29166

The postinstall script of MXFPlugins.pkg

However, we cannot pre-create the

dst directory before the copy.

If the dst directory exists, the

postinstall script creates a new dst

directory with a different name.

86

Case study 2: CVE-2023-29166

The postinstall script of MXFPlugins.pkg

Thus, we need to add a symlink to the dst

directory after this directory is created, but

the time window is too narrow

87

Winning the race

The postinstall script of MXFPlugins.pkg

$UNIQUE_TARGET_DIR

$SOURCE_DIR

file_a

file_b

A dmg is mounted on

$SOURCE_DIR

88

Winning the race

The postinstall script of MXFPlugins.pkg

$UNIQUE_TARGET_DIR

$SOURCE_DIR

file_a

file_b
The file_a is a

large file.

89

Winning the race

The postinstall script of MXFPlugins.pkg

$UNIQUE_TARGET_DIR

file_a

$SOURCE_DIR

file_a

file_b

90

Winning the race

The postinstall script of MXFPlugins.pkg

$UNIQUE_TARGET_DIR

file_a

file_b

$SOURCE_DIR

file_a

file_b

We have enough time to create

a symlink during the copy.

91

Winning the race

The postinstall script of MXFPlugins.pkg

$UNIQUE_TARGET_DIR

file_a

file_b

$SOURCE_DIR

file_a

file_b

The symlink is followed.

92

Winning the race

The postinstall script of MXFPlugins.pkg

$UNIQUE_TARGET_DIR

file_a

file_b

$SOURCE_DIR

file_a

file_b

TCC.db

SIP-protected file is

overwritten.

93

Apple’s fix

Apple updated the pkg and changed the postinstall script.

rsync is used for copying, and hence,

the symlink is no longer followed.

https://support.apple.com/en-us/HT213882

https://support.apple.com/en-us/HT213882

94

And more…

Some issues are still being addressed…

95

My thoughts

The pre/postinstall scripts of all Apple-signed pkgs do not require

the SIP-bypass primitive.

I think some pkgs should be executed by installd (not system_installd).

Apple should review the code of the pre/postinstall scripts of Apple-

signed pkgs.

They appear not to pay attention to these, even though vulnerabilities in these

scripts are dangerous.

96

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Modifying

system files

Loading

kexts

Gatekeeper

App Sandbox TCC

SIP

XProtect

Accessing sensitive info

Executing

2nd stage

malware

Clicking a macro-embedded doc

(executing sandboxed code)

Clicking a malicious

app bundle

97

Overview of macOS security & privacy mechanisms

Executing

unsandboxed code

Modifying

system files

Loading

kexts

Gatekeeper

App Sandbox TCC

SIP

XProtect

Accessing sensitive info

Executing

2nd stage

malware

Bypassed
(but only filesystem

restriction)Clicking a macro-embedded doc

(executing sandboxed code)

Clicking a malicious

app bundle

98

Summary & Takeaways

99

Summary

Overview of macOS security & privacy mechanisms

New bypass techniques for these mechanisms

Typical 3rd party vulns that allow an attacker to bypass these mechanisms

100

Takeaways

For Red Teamers
PoC code is available on GitHub (https://github.com/FFRI/PoC-public)
• This code will be helpful for future red team exercises targeting macOS.

For Security Researchers
Logic bugs are quite powerful for bypassing various security & privacy

mechanisms on macOS.
• As PAC enforcement is enabled on Apple Silicon Mac, exploiting memory corruption

vulnerabilities is becoming more difficult.

For macOS App Developers
Please check whether your Electron-based app is built with secure build

configurations.
• An app built with default configurations has vulnerabilities that allow an attacker to bypass

TCC and Gatekeeper.

101

Takeaways

For Red Teamers
PoC code is available on GitHub (https://github.com/FFRI/PoC-public)
• This code will be helpful for future red team exercises targeting macOS.

For Security Researchers
Logic bugs are quite powerful for bypassing various security & privacy

mechanisms on macOS.
• As PAC enforcement is enabled on Apple Silicon Mac, exploiting memory corruption

vulnerabilities is becoming more difficult.

For macOS App Developers
Please check whether your Electron-based app is built with secure build

configurations.
• An app built with default configurations has vulnerabilities that allow an attacker to bypass

TCC and Gatekeeper.

Last but not least, please keep your

macOS up to date!

102

Q&A

@tsunek0h

