
Deep-Kernel Treasure Hunt
Finding exploitable structures

in the Linux kernel

About Me

2

Yudai Fujiwara

- Security researcher at Ricerca Security, Inc

- Binary exploitation (pwn)

- Twitter: @ptrYudai

What is this talk about?

3

The challenge:
How do you find exploit-friendly structures for heap-related bugs?

The goal:
To find dynamic and exploit-friendly structures allocated in a program

The outcome:
Discovered more than 1k exploit-friendly structures from the Linux

A Bug is NOT Exploitable Itself

4

CVE-2022-24834

CVE-2023-5474

A Bug is NOT Exploitable Itself

5

CVE-2022-24834

CVE-2023-5474

Exploit = Bug + Useful Structures

MALTIES; Malloc Tracker for Identifying Exploitable Structures

Proposal: MALTIES

6

kmalloc@funcA
kzalloc@funcB
kmem_cache_alloc@funcC
…

Linux
source code

vmlinux

Compile with
debug symbols

(optional)

Output

1. Find every allocation.
2. Extract size if fixed.
3. Filter allocatable ones.

● Linux kernel 6.1.52

● Structures dynamically allocated on kmalloc-xxx (slab caches)

The Target

7

Background and Motivation
8

Heap in the Kernel

Heap - used to store data for drivers and the kernel
● kmalloc carves out a certain size of chunk
● kfree marks a specific chunk as freed
● They generally share the same heap

9
Kernel Heap

Heap in the Kernel

Heap - used to store data for drivers and the kernel
● kmalloc carves out a certain size of chunk
● kfree marks a specific chunk as freed
● They generally share the same heap

10

Driver X:
kmalloc Chunk

for driver X

Kernel Heap

Heap in the Kernel

Heap - used to store data for drivers and the kernel
● kmalloc carves out a certain size of chunk
● kfree marks a specific chunk as freed
● They generally share the same heap
●

11

Driver X:
kmalloc

Kernel:
kmallocChunk

for driver X
Chunk

for driver X

Chunk
for the kernel

Kernel Heap

Heap in the Kernel

Heap - used to store data for drivers and the kernel
● kmalloc carves out a certain size of chunk
● kfree marks a specific chunk as freed
● They generally share the same heap
●

12

Driver X:
kmalloc

Kernel:
kmalloc

Driver X:
kfreeChunk

for driver X
Chunk

for driver X

Chunk
for the kernel

Chunk
for the kernel

Freed

Kernel Heap

Heap in the Kernel

Heap - used to store data for drivers and the kernel
● kmalloc carves out a certain size of chunk
● kfree marks a specific chunk as freed
● They generally share the same heap
●

13

Driver X:
kmalloc

Kernel:
kmalloc

Driver X:
kfreeChunk

for driver X
Chunk

for driver X

Chunk
for the kernel

Chunk
for the kernel

Freed

Kernel Heap

Heap bugs in a driver
can affect the entire kernel

Heap Buffer Overflow

● Out-of-bounds memory access
● Exploitable if an exploit-friendly chunk follows the vuln chunk

14

vuln

exploit-
friendly

AAAAAAAA
AAAAAAAA
AAAAAAAA

exloit-
friendly

AAAA

p

q

p

q

BOF

① ②

Use-after-Free

● Memory access in a freed chunk (dangling pointer)

● Exploitable if an exploit-friendly chunk is allocated on the vuln chunk

15

vuln

p

(freed)

p

exploit-
friendly

p,q

free

alloc

exploit-
friendly

p,qUAF
AAAAAAAA

① ②

③ ④

SLUB

SLUB - heap manager used in the Linux kernel
● Uses a different page frame for each size of allocation
● Manages freed chunks (cache) with singly-linked lists

16

SLUB

SLUB - heap manager used in the Linux kernel
● Uses a different page frame for each size of allocation
● Manages freed chunks (cache) with singly-linked lists

17

SLUB

SLUB - heap manager used in the Linux kernel
● Uses a different page frame for each size of allocation
● Manages freed chunks (cache) with singly-linked lists

18

● Can control the allocation from user-land

● With exploitable or controllable members
○ i.e., Function pointers, Blob data, etc

● Structure of a size similar to that of the vulnerable chunk
○ kmalloc-8, kmalloc-16, kmalloc-32, …, kmalloc-4k, kmalloc-8k

Exploit-Friendly Structures

19

Well-Known Structures

20

Examples of exploit-friendly structures:

● seq_operations → kmalloc-32
● tty_struct → kmalloc-1024
● setxattr → arbitrary data and size, but is freed immediately
● msg_msg → arbitrary data and size ranging from 0x31 to 0x1000

i.e., Open /dev/ptmx to allocate a tty_struct structure

Well-Known Structures

21

Examples of exploit-friendly structures:

● seq_operations → kmalloc-32
● tty_struct → kmalloc-1024
● setxattr → arbitrary data and size, but is freed immediately
● msg_msg → arbitrary data and size ranging from 0x31 to 0x1000

i.e., Open /dev/ptmx to allocate a tty_struct structure

Any more?

Related Works
22

Related Works

● Dynamic analysis
○ [dyn-1] Instrument kmalloc to detect runtime allocations

● Static analysis
○ [stat-1] Utilize LLVM to spot all kmalloc calls in the source code
○ [stat-2] Analyze the Linux source code to locate all structures
○ [stat-3] Analyze the debug info of vmlinux to identify all structures

23

Challenges

● Size accuracy
○ Determine the precise size of the allocation

● Coverage accuracy
○ Locate all allocations through kmalloc

● Allocatability
○ Verify whether the structure can be allocated from user-land

● Exploitability
○ Check if the structure has exploitable or controllable data

24

Introducing MALTIES
25

MALTIES; Malloc Tracker for Identifying Exploitable Structures

● MALTIES finds:
○ Dynamically allocated structures
○ Size of each allocation
○ Possible paths to reach the allocation

● MALTIES extracts:
○ Structures likely allocatable from user-land.
○ Structures likely exploitable. (optional)

MALTIES

26

Comparison

27

Method Size
accuracy

Coverage
accuracy

Allocatability
check

Exploitablity
check

Support
binary-only

dyn-1 ✔ ✗ ✔ ✗ ✔

stat-1 ✔ ✔ ✗ ✗ ✗

stat-2 ✔ △ ✗ ✗ ✗

stat-3 ✔ △ ✗ ✗ ✗

MALTIES ✔ ✔ △ △ ✔

MALTIES is written as a Ghidra script

Algorithm

28

kmalloc@funcA
kzalloc@funcB
kmem_cache_alloc@funcC
…

Linux
source code

vmlinux

Compile with
debug symbols

(optional)

Output

1. Find every allocation.
2. Extract size if fixed.
3. Filter allocatable ones.

● Open source
● Powerful disassembler and decompiler
● Binary-oriented
● Good coverage
● Simplifies the process of locating function references

Why Ghidra?

29

Algorithm

30

void fun_XXXX() {
 size_t lVarA = 0x110;
 …
 lVarB = __kmalloc(lVarA, param_2 | 0x100);
 …
}

void fun_YYYY(long param_1) {
 …
 lVarD = __kmalloc(param_1, 0xdc0)
 …
}

① Locate all allocations such as kmalloc, kmalloc_trace, etc

Algorithm

31

void fun_XXXX() {
 size_t lVarA = 0x110;
 …
 lVarB = __kmalloc(lVarA, param_2 | 0x100);
 …
}

void fun_YYYY(long param_1) {
 …
 lVarD = __kmalloc(param_1, 0xdc0)
 …
}

② Propagate variables to identify size

Algorithm

32

void fun_XXXX() {
 size_t lVarA = 0x110;
 …
 lVarB = __kmalloc(lVarA, param_2 | 0x100);
 …
}

void fun_YYYY(long param_1) {
 …
 lVarD = __kmalloc(param_1, 0xdc0)
 …
}

size: 0x110

size: variable

③ Traverse control flow graph

Algorithm

33

void fun_XXXX() {
 size_t lVarA = 0x110;
 …
 lVarB = __kmalloc(lVarA, param_2 | 0x100);
 …
}

void fun_YYYY(long param_1) {
 …
 lVarD = __kmalloc(param_1, 0xdc0)
 …
}

fun_XXXX

fun_A fun_B

fun_C

fun_D

fun_E

table1 table2

Algorithm

kmalloc@funcA

funcA

funcB funcC

funcE

funcD

funcF

table1 table2

sz = 0x80;
…
if (…) {
 …
 p = kmalloc(sz, …);
 …
}
…

input (xref to kmalloc)

funcA:

Symbolic propagation
Track all possible paths

output:
- place: funcA
- size: 0x80
- roots: {table1, table2} 34

Result
35

Discovered Structures

Found a total of 1133 structures (excluding kmem_cache)
● signalfd_ctx
● tty_ldisc
● sock_fprog_kern
● inotify_event_info
● sem_undo_list
● sk_filter

and many more……

36

Example 1: kmalloc-8
signalfd_ctx

● Allocatable?
○ Call signalfd or signalfd4 to allocate
○ Close fd and wait for RCU to free

● Exploit-friendly?
○ Readable from user-land (Read /proc/self/fdinfo/<fd>)
○ Writable from user-land (Call sigdelsetmask and signotset)

37

Example 2: kmalloc-256
shmid_kernel

● Allocatable?
○ Call shmget to allocate
○ Call shmctl with IPC_RMID to free

38

Example 2: kmalloc-256
shmid_kernel

● Exploit-friendly?
○ ns has a pointer to init_ipc_ns

➢ Useful for bypassing FGKASLR

○ shm_creator has a pointer to current
➢ Useful for overwriting cred

○ shm_perm has a function pointer

39

Example 3: variable size
sem_array

● Allocatable?
○ Call semget to allocate

➢ Set nsems to control size

● Exploit-friendly?
○ Elements of sems are controllable
○ sem_perm has a function pointer

40

Future Work

41

● Indirect branches
○ Ghidra cannot find some xrefs of indirect branches

➢ i.e., Dynamically allocated function table

● Variable sizes
○ The size of allocation is often variable
○ Requires precise (=sound) DFA to calculate the range of possible sizes

Conclusion

42

● Discovered >1k exploit-friendly structures in the Linux
○ Structures that can be allocated from user-land
○ Structures that have exploitable/controllable data fields

● MALTIES is designed for general purpose
○ Not only for the Linux kernel but also for user-land applications
○ Applicable to close-sourced and large software

Takeaways

43

● Exploiting heap-related bugs
○ Requires exploit-friendly structures

● Vulnerabilities in the kernel space
○ Easier to exploit
○ More critical
○ Do not easily install drivers

● Ghidra script
○ A strong tool to easily write complicated algorithms

Questions?

44

Yudai Fujiwara
Work: yudaif@ricsec.co.jp
Personal: ptr.yudai@gmail.com
Twitter: @ptrYudai

Special thanks:
CODEBLUE staffs
Yuichi Sugiyama (Ricerca Security, Inc.)

