Deep-Kernel Treasure Hunt

Finding exploitable structures
in the Linux kernel

About Me

Yudai Fujiwara

- Security researcher at Ricerca Security, Inc (§)

- Binary exploitation (pwn)

- Twitter: @ptrYudai

What is this talk about?

The challenge:
How do you find exploit-friendly structures for heap-related bugs?

The goal:
To find dynamic and exploit-friendly structures allocated in a program

The outcome:
Discovered more than 1k exploit-friendly structures from the Linux

A Bug is NOT Exploitable Itself

Redis is an in-memory database that persists on disk. A specially crafted Lua script
executing in Redis can trigger a heap overflow in the ¢json library, and result with heap

corruption and potentially remote code execution. The problem exists in all versions of
Redis with Lua scripting support, starting from 2.6, and affects only authenticated and
authorized users. The problem is fixed in versions 7.0.12, 6.2.13, and 6.0.20.

CVE-2022-24834

Heap buffer overflow in PDF in Google Chrome prior to 118.0.5993.70 allowed a remote
attacker who convinced a user to engage in specific user interactions to potentially
lexploit heap corruption via a crafted PDF file. (Chromium security severity: Medium)

CVE-2023-5474

A Bug is NOT Exploitable Itself

Redis is an in-memory database that persists on disk. A specially crafted Lua script
executing in Redis can trigger a heap overflow in the ¢json library, and result with heap

corruption and potentially remote code execution. The problem exists in all versions of

Redis with Lua scripting support, starting from 2.6, and affects only authenticated and
4 N
PO.

authorized us

Exploit = Bug + Useful Structures

Heap buffer overflow in PDF in Google Chrome prior to 118.0.5993.70 allowed a remote
attacker who convinced a user to engage in specific user interactions to potentially
lexploit heap corruption via a crafted PDF file. (Chromium security severity: Medium)

CVE-2023-5474

Proposal: MALTIES

MALTIES; Malloc Tracker for Identifying Exploitable Structures

o mm mm e o mm mm mm mm mm m o e e e Em o e

V4 \
:I 1. Find every allocation. !
Compile with ! 2. Extract size if fixed. !
debug symbols ! 3. Filter allocatable ones. !
(optional) ; !
A N\ : kmalloc@funcA V :

I kzalloc@funcB L3
— > m _:_> kmem cache alloc@funcC !
'\ ,'
Linux vmlinux s S

———————————————————————————

source code

The Target

e Linux kernel 6.1.52

e Structures dynamically allocated on kmalloc-xxx (slab caches)

kmalloc-8k
kmalloc-4k
kmalloc-2k
kmalloc-1k
kmalloc-512
kmalloc-256
kmalloc-192

kmalloc-128
kmalloc-96
kmalloc-64
kmalloc-32
kmalloc-16
kmalloc-8

Background and Motivation

Heap in the Kernel

Heap - used to store data for drivers and the kernel
e kmalloc carves out a certain size of chunk

e kfree marks a specific chunk as freed

e They generally share the same heap

Kernel Heap

Heap in the Kernel

Heap - used to store data for drivers and the kernel
e kmalloc carves out a certain size of chunk
e kfree marks a specific chunk as freed
e They generally share the same heap

Driver X:
kmalloc Chunk

: for driver X

Kernel Heap

Heap in the Kernel

Heap - used to store data for drivers and the kernel

e kmalloc carves out a certain size of chunk

e kfree marks a specific chunk as freed

e They generally share the same heap

Driver X:
kmalloc

—

Kernel Heap

Chunk
for driver X

Kernel:
kmalloc

—

Chunk
for driver X

Chunk
for the kernel

11

Heap in the Kernel

Heap - used to store data for drivers and the kernel

e kmalloc carves out a certain size of chunk

e kfree marks a specific chunk as freed

e They generally share the same heap

Driver X:
kmalloc

—

Kernel Heap

Chunk
for driver X

Kernel:
kmalloc

—

Chunk
for driver X

Chunk
for the kernel

Driver X:

kfree

—

Chunk
for the kernel

12

Heap in the Kernel

Heap - used to store data for drivergeadthalasnal

e kmalloc carves out a certain
e kfree marks a specific chunk
e They generally share the same heap

Kernel Heap

Driver X:
kmalloc

—

Chunk
for driver X

Kernel:
kmalloc

—

Heap bugs in a driver
can affect the entire kernel

J

Chunk
for driver X

Chunk
for the kernel

Driver X:
kfree

—

Chunk
for the kernel

13

Heap Butfer Overflow

e Out-of-bounds memory access
e Exploitable if an exploit-friendly chunk follows the vuln chunk

@ @
P o —9»
AAAAAAAA
vuln BOF AAAAAAAA
AAAAAAAA
o —> > a—
) AAAA
exploit- TXT101t-
friendly friendly

Use-after-Free

e Memory access in a freed chunk (dangling pointer)
e Exploitable if an exploit-friendly chunk is allocated on the vuln chunk

@ @

P free p

vuln :> (freed)

® @

alloc 5, UAF 5, q—>

_ AAAAAAAA
|:> exploit- |:> TXPIOTT-
friendly friendly

SLLUB

SLUB - heap manager used in the Linux kernel
e Uses a different page frame for each size of allocation
e Manages freed chunks (cache) with singly-linked lists

Cache Descriptor Per Node Data Page Frame Descriptor
cpu_slub - > list_lock
nr_partial freelist
node partial
[MAX_NUMNODES] =
kca. cache kmem_cache_node

L frealist i i i i i i o :
]
1

kmem_cache_cpu

'
! g
1
U 1
in use in use in use freed freed m freed

NULL NULL

16

SLLUB

SLUB - heap manager used in the Linux kernel
e Uses a different page frame for each size of allocation
e Manages freed chunks (cache) with singly-linked lists

Cache Descriptor Per Node Data Page Frame Descriptor
cpu_slub — > list_lock
nr_partial freelist
node partial
[MAX_NUMNODES] —
k. cache kmem_cache_node

|-> Trealist i i i i s
1
1

kmem_cache_cpu

.
y v N / 4
in use in use in use freed freed freed m freed

NULL NULL

17

SLLUB

SLUB - heap manager used in the Linux kernel
e Uses a different page frame for each size of allocation
e Manages freed chunks (cache) with singly-linked lists

Cache Descriptor Per Node Data Page Frame Descriptor
cpu_slub - > list_lock
nr_partial freelist
node partial
[MAX_NUMNODES] =
kea cache kmem_cache_node

L frealist i i i i i i i 3
]
)

kmem_cache_cpu

v v N £ A
in use in use in use eed eed eed in use

NULL NULL

Exploit-Friendly Structures

e C(an control the allocation from user-land

e With exploitable or controllable members
o 1.e., Function pointers, Blob data, etc

e Structure of a size similar to that of the vulnerable chunk
o kmalloc-8, kmalloc-16, kmalloc-32, ..., kmalloc-4k, kmalloc-8k

19

Well-Known Structures

Examples of exploit-friendly structures:

seq operations — kmalloc-32
tty struct — kmalloc-1024
setxattr — arbitrary data and size, but 1s freed immediately

msg msg — arbitrary data and size ranging from 0x31 to 0x1000

1.e., Open /dev/ptmx to allocate a tty_struct structure

20

Well-Known Structuy

-

v
Any more? -

Examples of exploit-friend]

O
o
® seqg operations — kmalloc-

® tty struct — kmalloc-1024
® setxattr — arbitrary data and size, but is freed immediately
® msg msg — arbitrary data and size ranging from 0x31 to 0x1000

1.e., Open /dev/ptmx to allocate a tty_struct structure

Related Works

22

Related Works

e Dynamic analysis
o [dyn-1] Instrument kmalloc to detect runtime allocations

e Static analysis
o [stat-1] Utilize LLVM to spot all kmalloc calls in the source code
o [stat-2] Analyze the Linux source code to locate all structures
o [stat-3] Analyze the debug info of vmlinux to identify all structures

23

Challenges

Size accuracy
o Determine the precise size of the allocation

Coverage accuracy
o Locate all allocations through kmalloc

Allocatability

o Verify whether the structure can be allocated from user-land

Exploitability

o Check if the structure has exploitable or controllable data

24

Introducing MALTIES

25

MALTIES

MALTIES; Malloc Tracker for Identifying Exploitable Structures

e MALTIES finds:
o Dynamically allocated structures
o Size of each allocation
o Possible paths to reach the allocation

e MALTIES extracts:

o Structures likely allocatable from user-land.
o Structures likely exploitable. (optional)

26

Comparison

Method Size Coverage | Allocatability | Exploitablity Support
accuracy | accuracy check check binary-only
dyn-1 4 X v X 4
stat-1 v/ v X X X
stat-2 v A X X X
stat-3 v A X X X
MALTIES 4 v A A 4

27

Algorithm

MALTIES is written as a Ghidra script

Compile with
debug symbols

(optional)

A
@) —

Linux
source code

@

vmlinux

o mm mm e o mm mm mm mm mm m o e e e Em o e

1. Find every allocation.
2. Extract size if fixed.
3. Filter allocatable ones.

kmalloc@funcA i ;

kzalloc@funcB
kmem cache alloc@funcC

———————————————————————————

28

Why Ghidra?

Open source

Powerful disassembler and decompiler
Binary-oriented

Good coverage

Simplifies the process of locating function references

29

Algorithm

void fun_XXXX() {
size_t 1VarA = 0x110;

LVarB = __kmalloc(lVarA, param_2 | 0x100);

} e

void fun_YYYY(long param_1) {

LVarD = __kmalloc(param_1, 0xdcO)

30

Algorithm

(D Locate all allocations such as kmalloc, kmalloc_trace, etc

void fun_XXXX() {
size_t 1VarA = 0x110;

LVarB = __kmalloc(lVarA, param_2 | 0x100);

} e

void fun_YYYY(long param_1) {

LVarD = __kmalloc(param_1, 0xdc0)

31

Algorithm

(2) Propagate variables to identify size

void fun_XXXX() { e 0x110
size_t 1VarA = 0x110; l S1ZC. VX I

lVarB = __kmalloc41VarA‘ param_2 | 0x100);
+
void fun_YYYY(long param_l)[ﬁze:vaﬁabk:]
LVarD = __kmalloc4param_l OxdcO)

Algorithm

(3 Traverse control flow graph / \
void [fun_xxxx{) Fun_xxxx ‘
size_t [VarA = /T\
LVarB = __kmalloc fun A fun B fun D
] | fun C fun E
void |fun_YYYY{long p _ _

LVarD = __kmalloc(\ tablel tableZ/

Algorithm

S -
. A
input (xref to kmalloc) Qossx\o\eg - »/T\
kmallo?@funcA ﬁﬁ&xi,»’ funcB funcC funcD
-
Symbolic propagation : _-" - \ / T
funcA: i _-" -
funcE funcF
sz = 0x80;w.-.. T T
if () | tablel table?
p = kmalloc(sz, ..); output:
}"' - place: funcA
- size: 0x80

- roots: {tablel, table2}

34

Result

35

Discovered Structures

Found a total of 1133 structures (excluding kmem cache)

signalfd_ctx ___
. I console - Scripting
tty_ldisc (dr_seLf refresh_helper_init, [144L])
(ttm_range_man_alloc, [240L]) Halfias X
SOCk_fprog_kern (ttm_sys_man_alloc, [72L]) Py
. . . (qxL_bo_create, [632L]) ’
inotify_event_info (qxL_device_init, [32L, 32L, 32L «

1)
. (qxl_device_init, [32L, 32L, 32L])
sem_undo_l'l st (gxL_device_init, [32L, 32L, 32L])
. (qxL_modeset_init, [1024L, 1456L])
Sk_f'l lter (qxl_modeset_init, [1024L, 1456L])
(qxL_create_plane, [664L])
and many more...... (qxL_ring create, [40L])

(qxL_release_List_add, [32L])

(qxL_release_alloc, [128L])
(qxL_image_alloc_objects, [24L, 24L])
(gqxL_image_alloc_objects, [24L, 24L])
(qxL_ttm_tt_create, [48L])
(virtio_gpu_cmd_get_display_info, [408L])

Example 1: kmalloc-8

signalfd ctx struct signalfd_ctx {

e Allocatable? ¥

sigset_t sigmask;

o Call signalfd or signalfd4 to allocate
o Close fd and wait for RCU to free

e Exploit-friendly?
o Readable from user-land (Read /proc/self/fdinfo/<fd>)
o Writable from user-land (Call sigdelsetmask and signotset)

37

Example 2: kmalloc-256

shmid_kerne'l

e Allocatable?

o (Call shmget to allocate
o Call shmctl with IPC_RMID to free

struct shmid_kernel /*

r
L

R S 4 ormel /
private to the kernel */

struct kern_ipc_perm shm_pernm;

struct file
unsigned long
unsigned long
time64_t
time64_t
time64_t
struct pid
struct pid
struct ucounts

/ %

* The task created the shm object, for
* task_lock(shp->shm_creator)
% /
struct task_struct *shm_creator;
1
* |ist by creator. task_lock(->shm_crea
* If list_empty(), then the creator is
.7
struct list_head shm_clist;
struct ipc_namespace “ns;

} __randomize_layout;

*shm_file;
shm_nattch;
shm_segsz;
shm_atim;
shm_dtim;
shm_ctim;
*shm_cprid;
*shm_lprid;

*mlock_ucounts;

38

Example 2: kmalloc-256

shmid_kerne'l

e Exploit-friendly?
© ns has a pointer to init_ipc_ns
> Useful for bypassing FGKASLR

O shm creator has a pointer to current
> Useful for overwriting cred

0 shm_perm has a function pointer

struct shmid_kernel /* private

¥
L

struct kern_ipc_perm
struct file

unsigned long
unsigned long
time64_t

time64_t

time64_t

struct pid

struct pid

struct ucounts

* The task created

~+
[
>
©

struct task_struct

struct list_head
struct ipc_namespace

} __randomize_layout;

to

shm_pernm;
*shm_file;
shm_nattch;
shm_segsz;
shm_atim;
shm_dtim;
shm_ctim;
*shm_cprid;
*shm_lprid;

*mlock_ucounts;

*shm_creator;

shm_clist;
“ns;

the kernel */

39

Example 3: variable size

sem_array

e Allocatable?

o Call semget to allocate
> Set nsems to control size

e Exploit-friendly?
o Elements of sems are controllable
o sem_perm has a function pointer

struct sem_array {
struct kern_ipc_perm
time64_t
struct list_head

struct list_head
struct list_head
int

int

unsigned int

struct sem
} __randomize_layout;

sem_perm;
sem_ctime;
pending_alter;

pending_const;
list_id;
sem_nsens ;
complex_count;

use_global_lock:;

sems| 1;

40

Future Work

e Indirect branches
o Ghidra cannot find some xrefs of indirect branches
> 1.e., Dynamically allocated function table

e Variable sizes
o The size of allocation is often variable
o Requires precise (=sound) DFA to calculate the range of possible sizes

41

Conclusion

e Discovered >1k exploit-friendly structures in the Linux
o Structures that can be allocated from user-land
o Structures that have exploitable/controllable data fields

e MALTIES is designed for general purpose
o Not only for the Linux kernel but also for user-land applications
o Applicable to close-sourced and large software

42

Takeaways

e Exploiting heap-related bugs
o Requires exploit-friendly structures

e Vulnerabilities in the kernel space
o Easier to exploit
o More critical
o Do not easily install drivers

e Ghidra script

o A strong tool to easily write complicated algorithms

43

Questions?

Yudai Fujiwara
Work: yudaif@ricsec.co.jp
Personal: ptr.yudai@gmail.com
Twitter: @ptrYudai

Special thanks:
CODEBLUE staffs
Yuichi Sugiyama (Ricerca Security, Inc.)

44

